• Non ci sono risultati.

2 2 2 2 ⎧⎫⎧⎫⎪⎪⎛⎞ ⎧⎫⎪⎪⎧⎫ EhhLogLogdBEd EhhLogLogdBEd 420*20*12.91 220*20*2sin13.15 ' + s = 1000 + 10 + 100 + 10  1000 + 100.5 = 1100.5 m 120 120 s == == −⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭ −⎨⎬⎨⎬⎜⎟⎝⎠⎪⎪⎩⎭⎩⎭

N/A
N/A
Protected

Academic year: 2021

Condividi "2 2 2 2 ⎧⎫⎧⎫⎪⎪⎛⎞ ⎧⎫⎪⎪⎧⎫ EhhLogLogdBEd EhhLogLogdBEd 420*20*12.91 220*20*2sin13.15 ' + s = 1000 + 10 + 100 + 10  1000 + 100.5 = 1100.5 m 120 120 s == == −⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭ −⎨⎬⎨⎬⎜⎟⎝⎠⎪⎪⎩⎭⎩⎭"

Copied!
4
0
0

Testo completo

(1)

Exercise A2 Problem 1

Let’s consider a 1800 MHz public mobile radio system operating in a microcellular environment. The base station is at a height of 3 m above the ground and the mobile at 1 m. The antenna gains are 5 and 3 dBi’s for the BS and the mobile antenna, respectively.

It is required to determine the minimum transmitted power in order for the BS to serve a mobile at a distance of 1000 m in LOS. Receiver sensitivity is -104 dBm. Ground reflection must be taken into account.

Problem 2

Now the mobile turns into a perpendicular street and and goes another 100 meters down the street. The same minimum Tx power as in problem 1 must be determined, this time neglecting ground reflection, assuming the same height for both terminals and using GTD diffraction coefficients. Both the BS and the mobile are at 10 m from the side of the street. Polarization is horizontal.

Solution Problem 1

Friis’s equation is:

Pt(dBm) = Pr(dBm) – Gt – Gr + 20*log(4πd/λ) If only the direct ray is considered we have

Pt(dBm) = -104 -5 -3 +97.6= -14.4 dBm

If also ground reflection is considered we have an additional path gain of

1 2 0

20* E 20* 2 sin 2 h h 13.15

Log Log dB

E d

π λ

⎧ ⎫ ⎧ ⎫

⎪ ⎪= ⎛ ⎞ = −

⎨ ⎬ ⎨ ⎜⎝ ⎟⎠⎬

⎪ ⎪ ⎩ ⎭

⎩ ⎭

Since link distance is much greater than breakpoint distance (about 72 m here) also the simplified formula could be used:

1 2 0

20* E 20* 4 h h 12.91

Log Log dB

E d

π λ

⎧ ⎫

⎪ ⎪= ⎧ ⎫= −

⎨ ⎬ ⎨ ⎬

⎩ ⎭

⎪ ⎪

⎩ ⎭

Using the first, more accurate result we get:

Pt(dBm) = Pt+13.15= -0.9 dBm

Problem 2

Adopting a similar approach as before, if diffraction would cause no attenuation we’d have a total path of s'+ s = 10002+102 + 1002+102  1000 +100.5 = 1100.5m

Without  diffraction  we  would  therefore  get:  

 

Pt(dBm)  =  -­‐104  -­‐5  -­‐3  +98.4=  -­‐13.6  dBm  

Now let’s derive the additional path gain with diffraction

(2)

0

20* E

PG Log

E

⎧ ⎫

⎪ ⎪

= ⎨ ⎬

⎪ ⎪

⎩ ⎭

The field of the unfolded ray without diffraction would be

0 60

2

j r j r

Tx

x x

PG e e

j j EIRP

r r

β β

η π

= =

E i i

Thus:

0 '

60EIRP

= s s

E + (1)

Where s+s’ is the total unfolded ray length. Now, if Pd is the diffraction point on the edge, for the diffracted field we have:

( ) ( ) ( )

' '

' '

, 60

d H

EIRP s

E E P D A s s D

s s s s

= ⋅ ⋅ = ⋅

+ Therefore (see also the appendix)

PG= 20* Log E E0

⎧⎨

⎩⎪

⎫⎬

⎭⎪= 20* Log DHs+ s' s'

s' s s

( )

+ s'

⎨⎪

⎩⎪

⎬⎪

⎭⎪

=

20 * Log DHs+ s' s⋅s'

⎧⎨

⎩⎪

⎫⎬

⎭⎪ −36.06dB And transmitted power must be

Pt = Pt+36.06= -13.6+36.06≈ 22.5 dBm≈ 178 mW

A more straightforward method is to compute the field at the diffraction point using a formula similar to (1), then compute the diffracted field in the destination point with the usual GTD formula, and finally derive the received power (as a function of the Tx power) by multiplying the destination incident power density by the effective area of the Rx antenna.

Adopting this approach we have:

E = E P

( )

d ⋅ D ⋅ A s,s

( )

' = 60EIRPs' DH s s

( )

s+ s' '

where

A(s,s')= s'

s s

( )

+ s' = 0.095 and DH = 0.15 therefore:

PR = E2GR λ2

4π = −104 [dBm]=39.8x10−15 [W]

Thus :

(3)

E2= PR 2η⋅4π GR⋅λ2 = PR

8⋅120π2 GR⋅λ2

60EIRP

s' DH ⋅ A = PR8⋅120π2 GR⋅λ2

EIRP= PR 8⋅2π2 GR⋅λ2

s'2 DH 2⋅ A2

PT = PR 8⋅2π2 GTGR⋅λ2

s'2

DH2⋅ A2 = 39.8x10−15 16π2 3.16⋅2⋅λ2

10002

0.152⋅0.0952 = 0.177 [W]

Appendix: computation of |DH| The GTD expression is:

( ) ( )

( ) ( )

4 sin 1 1

, ', 2 cos cos cos cos

j

H e n

D n

n n n n n

π π

φ φ πβ π ξ π ξ

+

⎡ ⎤

− ⋅ ⎢ ⎥

= ⋅⎢ + ⎥

⎛ ⎞ ⎛ ⎞

⎢ − ⎜ ⎟ − ⎜ ⎟⎥

⎢ ⎝ ⎠ ⎝ ⎠⎥

⎣ ⎦

(1)

In this case:

n =1.5

φ=1.5π-atan(10/100)=4.61 Rad φ’=atan(10/1000)=0.01

ζ-= φ- φ’=4.6 ζ+= φ+ φ’=4.62

The square parenthesis in 1) gives therefore

( ) (

1 4.60

) ( ) (

1 4.62

) [

2.01 2.008

]

4.018

cos π1.5 cos 1.5 cos π1.5 cos 1.5

⎡ ⎤

⎢ + ⎥= + =

⎢ − − ⎥

⎢ ⎥

⎣ ⎦

While the preceding factor gives:

( ) ( )

4 sin sin 1.5 0.037

1.5 2 2

e j n

n

π π π λ

πβ π

= =

⋅ Thus:

0.037 4.018 0.15

DH = ⋅ =

(4)

 

Riferimenti

Documenti correlati

Matteo 19,30-20,16: «Molti dei primi saranno ultimi e molti degli ultimi primi».  la parabola suggerisce al discepolo preoccupato della sua ricompensa («Abbiamo lasciato tutto…

[r]

Se applichiamo il campo elettrico esterno ad un solido la cui banda è piena (cioè tutti gli stati permessi sono occupati), succede che ogni elettrone passa da uno stato al

[r]

a) Disegna due angoli uno di 74° e uno di 143° e le loro bisettrici. Indica bene il nome degli angoli e la proprietà della bisettrice.. b) Disegna un segmento di 6.5 cm non

200 del 11/12//2017, di approvazione del progetto del Servizio di trasporto in favore di studenti diversamente abili degli istituti superiori della Provincia del Sud Sardegna -

Domanda 16 Nel gioco dei dadi, lanciando contemporaneamente due dadi, qual è la probabilità che si abbiano due facce con somma

[r]