• Non ci sono risultati.

0 (sin x)n xm dx

N/A
N/A
Protected

Academic year: 2021

Condividi "0 (sin x)n xm dx"

Copied!
1
0
0

Testo completo

(1)

Problem 11423

(American Mathematical Monthly, Vol.116, March 2009) Proposed by G. Minton (USA).

Show that if n and m are positive integers with n ≥ m and n − m even, then Z +∞

0

(sin x)n xm dx is a rational multiple of π.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

If m > 2 then by integrating by parts Z +∞

0

(sin x)n

xm dx = − 1 m −1

Z +∞

0

(sin x)nd

 1 xm−1



= − 1

m −1

 (sin x)n xm−1

+∞

0

+ n

m −1 Z +∞

0

(sin x)n−1cos x xm−1 dx

= − n

(m − 1)(m − 2) Z +∞

0

(sin x)n−1cos x d

 1 xm−2



= − n

(m − 1)(m − 2)

 (sin x)n−1cos x xm−2

+∞

0

+ n

(m − 1)(m − 2) Z +∞

0

(n − 1)(sin x)n−2(cos x)2−(sin x)n−1

xm−2 dx

= n(n − 1) (m − 1)(m − 2)

Z +∞

0

(sin x)n−2

xm−2 dx − n2 (m − 1)(m − 2)

Z +∞

0

(sin x)n xm−2 dx.

Hence it suffices to consider the cases when m = 1, n = 2a − 1, and m = 2, n = 2a for some positive integer a.

Z +∞

0

(sin x)2a−1

x dx = 1

22a−2

a−1

X

k=0

(−1)a+k−12a − 1 k

 Z +∞

0

sin((2a − 2k − 1)x)

x dx

= 1

22a−2

a−1

X

k=0

(−1)a+k−12a − 1 k

 Z +∞

0

sin x x dx

= π

22a−1

a−1

X

k=0

(−1)a+k−12a − 1 k



=(2a − 3)!!

(2a − 2)!!·π 2. In a similar way it can be seen that

Z +∞

0

(sin x)2a

x2 dx= n Z +∞

0

(sin x)2a−1cos x

x dx=(2a − 3)!!

(2a − 2)!! ·π 2.



Riferimenti