• Non ci sono risultati.

0 and d = a + b + 2c then Z ∞ 0 (1 − e−ax)(1 − e−bx)e−cx x(1 − e−dx) dx = log sin(π(a + c)/d) sin(πc/d

N/A
N/A
Protected

Academic year: 2021

Condividi "0 and d = a + b + 2c then Z ∞ 0 (1 − e−ax)(1 − e−bx)e−cx x(1 − e−dx) dx = log sin(π(a + c)/d) sin(πc/d"

Copied!
1
0
0

Testo completo

(1)

Problem 11564

(American Mathematical Monthly, Vol.118, April 2011) Proposed by Albert Stadler (Switzerland).

Prove that

Z 0

e−x(1 − e−6x)

x(1 + e−2x+ e−4x+ e−6x+ e−8x)dx = log 3 +√ 5 2

! .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

We will prove a more general result: if a, b, c > 0 and d = a + b + 2c then Z

0

(1 − e−ax)(1 − e−bx)e−cx

x(1 − e−dx) dx = log sin(π(a + c)/d) sin(πc/d)

 . By letting a = 2, b = 6, and c = 1, then the integral is equal to

log sin(3π/10) sin(π/10)



= log 3 +√ 5 2

! .

By expanding the integrand, we obtain Z

0

(1 − e−ax)(1 − e−bx)e−cx x(1 − e−dx) dx =

Z 0

X

n≥1

(−1)n((a + b)n− an− bn)xn−1 n!

X

k≥0

e−(kd+c)xdx

=X

n≥1

(−1)n((a + b)n− an− bn) n!

X

k≥0

Z 0

xn−1e−(kd+c)xdx

=X

k≥0

X

n≥1

(−1)n((a + b)n− an− bn) n(kd + c)n

=X

k≥0

 log



1 + a kd + c

 + log



1 + b kd + c



− log



1 + a + b kd + c



=X

k≥0

log (kd + a + c)(kd + b + c) (kd + c)(kd + a + b + c)



= logY

k≥0

 (kd + a + c)(kd + b + c) (kd + c)(kd + a + b + c)



= log

 Γ(c/d)Γ((a + b + c)/d) Γ((a + c)/d)Γ((b + c)/d)



where in the last step we used the Weirstarss product zY

k≥1

1 + z k

ekz = 1 Γ(z)eγz. By the reflection property, if z is not an integer then

Γ(z)Γ(1 − z) = π sin(πz). Hence, since d = a + b + 2c, it follows that

Γ(c/d)Γ((a + b + c)/d)

Γ((a + c)/d)Γ((b + c)/d) = sin(π(a + c)/d) sin(πc/d) .



Riferimenti