• Non ci sono risultati.

from rats of the fictive respiratory output in a brainstem–spinal cordpreparation Error signals as powerful stimuli for the operant conditioning-likeprocess Behavioural Brain Research

N/A
N/A
Protected

Academic year: 2021

Condividi "from rats of the fictive respiratory output in a brainstem–spinal cordpreparation Error signals as powerful stimuli for the operant conditioning-likeprocess Behavioural Brain Research"

Copied!
8
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Behavioural Brain Research

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b b r

Research report

Error signals as powerful stimuli for the operant conditioning-like process of the fictive respiratory output in a brainstem–spinal cord preparation from rats

Alessandro Formenti

, Luciano Zocchi

DEPT—DepartmentofPathophysiologyandTransplantation,UniversityofMilan,ViaMangiagalli,32,20133Milano,Italy

h i g h l i g h t s

•Proprioceptiveinputinducedoperantconditioning-likeprocessonrespiratoryactivityinvitro.

•Afferencescontingentonrespiratoryburstsincreasetheirfrequencyandamplitude.

•Longandshorttermeffectsaredescribed.

•Diaphragmaticproprioceptiveinputsrepresentunconditionedstimuliwithhedonicfeatures.

•Aforwardmodelisassumedtointerprettheresults.

a r t i c l e i n f o

Articlehistory:

Received10March2014

Receivedinrevisedform19June2014 Accepted23June2014

Availableonline28June2014

Keywords:

Operantconditioning-likeprocess Fictiverespiratoryoutput Corollarydischarge Sensoryfeedback Learning

a b s t r a c t

Respiratoryneuromuscularactivityneedstoadapttophysiologicandpathologicconditions.Westudied theconditioningeffectsofsensoryfiber(putativeIaandIItypefromneuromuscularspindles)stim- ulationonthefictiverespiratoryoutputtothediaphragm,recordedfromC4phrenicventralroot,of in-vitrobrainstem–spinalcordpreparationsfromrats.Therespiratoryburstfrequencyintheseprepara- tionsdecreasedgradually(from0.26±0.02to0.09±0.003bursts−1±SEM)astheageofthedonorrats increasedfromzeroto4days.ThefrequencygreatlyincreasedwhenthepHofthebathwaslowered, andwassignificantlyreducedbyamiloride.

C4lowthreshold,sensoryfiberstimulation,mimickingastretchedmuscle,inducedashort-termfacil- itationofthephrenicoutputincreasingburstamplitudeandfrequency.Whenthesamestimuluswas appliedcontingentlyonthemotorbursts,inanoperantconditioningparadigm(a500mspulsetrain withadelayof700msfromthebeginningoftheburst)astrongandpersistent(>1h)increaseinburst frequencywasobserved(from0.10±0.007to0.20±0.018bursts−1).Conversely,withrandomstimu- lationburstfrequencyincreasedonlyslightlyanddeclinedagainwithinminutestocontrollevelsafter stoppingstimulation.

A forward modelis assumed tointerpretthe data,and the notionof errorsignal, i.e. thesen- sory fiberactivation indicating anunexpected stretched muscle, is re-considered in terms ofthe reward/punishmentvalue.Thesignal,gaininghedonicvalue,isreviewedasapowerfulunconditioned stimulussuitableinestablishingalong-termoperantconditioning-likeprocess.

©2014ElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/3.0/).

∗ Correspondingauthor.Tel.:+390250315464;fax:+390250315455.

E-mailaddress:Alessandro.Formenti@unimi.it(A.Formenti).

1. Introduction

1.1. Learningisaprocessthatproducesadaptivechangesinthe organism

Operantorinstrumentalconditioning[1]hasbeenproposedas afundamentaltypeofassociativelearning1inwhichitisassumed

1Herethe term“associative learning”refers to theempirical phenomenon thatanimalsadapttheirbehaviortothepresenceofsignificanteventsinthe http://dx.doi.org/10.1016/j.bbr.2014.06.038

0166-4328/©2014ElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/3.0/).

(2)

laughingorcrying[4].Whilesomeefforthasbeenmadetoclarify themechanismsthatunderlieoperantconditioningoftherespi- ratoryrhythminsimpleanimalmodels[5]littleisknownabout thisfunctioninmammals.Intheratarhythmicelectricalactivity recordedfromtherootofthefourthcervicalmotornerve(abranch ofthephrenic)hasalwaysbeendescribedcomprehensively,asthe motoroutputtothediaphragm[6].Thefunctionofthismotorout- putistocontrolrespiratorymovements.Changesinmotoroutput directlyaffectventilation.Therespiratory-relatedburstsrecorded fromthe4thcervicalmotorspinal nerve(C4)appeartobecor- related withan increase ofactivity in thepreBötCnucleus [7].

Thisnucleusishypothesizedtogeneratetheinspiratoryrhythm [8,9]drivenbyasubsetofneuronsexhibitingburstingorpace- makerproperties[10,11].Therespiratoryrhythmismodulatedby descendingandascendingsignals[4].Extracellularrecordingsof neuronalpopulationswithinthepre-BotCofperinatalmedullary slice preparations from rats demonstrated that the rhythmical respiratorydischargecommencesapproximatelyatembryonicday E17[12].

1.3. Thebrainstem–spinalcordpreparationinvitro

Thebrainstem–spinalcordpreparationfromtheratisawell- knownmodelandhasrecentlybeenreviewed[13].Itseemsvery promisinginstudyingtheoperantconditioning-likeprocessinthe mammaliannervous system.In fact, in addition tothe general advantagesofferedbyaninvitropreparation,suchaseasyaccess toelectrophysiologicaltechniques,andalmostfullbiochemicaland pharmacologicalcontroloftheextracellularmediumbypassingthe blood-brainbarrier,thispreparationalsoretainsarhythmicburst dischargeidentifiedasfictiverespiratoryactivityonthephrenic motorroots.Thisputativerespiratorybehaviorisquitewellchar- acterizedandrepresentsthemotorcommandtothediaphragm.

In addition, sensory input from the periphery can be simu- latedbyactivatingthedorsalrootstumpsbymeansofelectrical stimulation.

1.4. Maythespontaneousfictiverespiratoryactivitybechanged byoperantconditioninginvitro?

We addressed the question if the plasticity necessary for operant conditioning of respiratory circuits was retained in brainstem–spinal cordpreparations. This in vitro model seems particularly interesting since it permits the exclusion of the unavoidableeffects derivedfromthestimulationoftheperiph- eralstructures(e.g.musclefatigue,receptorhabituationetc.)that

environment,andconsidersbehavioralandphysiologicalchangesastheultimate criteriontodeterminewhetherlearninghastakenplace.

latedthattheerrorsignal,i.e.thedifferencebetweentheexpected andtheactualsituation,willcauseanadjustmentofmovement.

Assumingthattheafferencesfromtheproprioceptorsrepresent anerrorsignaltotheCNS,indicatinganunexpectedlengthand tension of the muscles, we can hypothesize that the operant conditioningparadigmandtheforwardmodelmaycoexistinone coherentandmoregeneraltheoryhelpfulinthisspecificcontext tobetter understandthepathophysiology ofrespiratory neural control.

2. Methods 2.1. Ethicalapproval

All experiments were carried out in accordance with the acceptedstandardsofhumaneanimalcareundertheguidelines oftheethiccommitteeoftheUniversityofMilan.

2.2. Invitroisolatedbrainstem–spinalcordpreparation

The brainstem–spinal cord was prepared, with someminor changes, using themethods already described in theliterature [6]. Sprague-Dawley rats 0–4 days (total: n=43) were deeply anaesthetizedbymeansofequitensine(4ml/kg)intraperitoneum, dissected,andimmediatelyplacedintoanartificialcerebrospinal fluid(aCSF)at4Cwithhigh[Mg2+]todecreaseneuronalexcitabil- ityduringpooroxygenatingconditions.ThecompositioninmM was:MgSO42,NaHCO326,NaH2PO41.25,KCl3,Glucose30,and Sucrose210.Therostralend oftheenblocpreparationwascut atthelevelofthecaudalcerebellarartery.Oncemeningeswere removed,thebrainstem–spinalcordpreparation(Fig.1A)wasput intoarecordingchambermadeofsiliconeelastomer,andperfused attherateof6ml/minwithasecondaCSFrecordingsolution.The compositioninmMoftheaCSFrecordingsolutionwas:NaCl130, KCl8,CaCl21.3,MgSO41.3,NaH2PO40.58,NaHCO325,andGlucose 30.Theperfusionsolutionwascontinuouslybubbledwithacarbo- genmixture95%O2and5%CO2.Temperaturewasmaintainedat 27C±1andpHat7.4unlessotherwiseindicated.Allsubstances weresuppliedfromSigma.

2.3. Invitroelectrophysiology

Electricalrecordingsandstimulationswereperformedutilizing firepolishedborosilicatemicropipettes(tipdiameter100–150␮m) placedonhomolateralventralanddorsalroots,asindicatedindia- gramsinFigs.1and2.Signalswereamplified,digitized,recorded onapcusingaDigidata1200(AxonInstruments)andanalyzeduti- lizingthesoftwarepClamp(AxonInstruments).Stimulationwas deliveredbymeansofaSD9stimulator(Grass)andtimedutilizing aPulsmasterA300(WPI).

(3)

Fig.1. Invitronewborn-ratbrainstem–spinalcordpreparationspresentedafictiverespiratoryactivitythatwasmodulatedvaryingphysiologicalandpharmacological conditions.(A)Schematicrepresentationofthebrainstem–spinalcordpreparationfromaventralviewindicatingthesiteofplacementoftheventralrootelectrode.Onthe rightatypicalrecordingfromtheIVcervicalanteriorrootisshown.Intheuppertraceaburstisexpandedonthetimescale.Themeanfrequencyofburstdischargewasa functionoftheageoftherat.Thebarchartin(B)showsthemeanfrequencyofburstdischargeat27±1Cfrom43brainstem–spinalcordpreparationsdissectedbetween postnatal(P)days0to4andrecordedincontrolconditions.(C)ApHvariationfrom7.4to7.1modulatedthemotoroutputrecordedfromrootC4nearlydoublingtheratein P3ratpreparations(n=4)asexpected.(D)Amiloride(0.5mM)reducedtheburstrate.Theinhibitoryeffectofamiloridewascompletelyremoveduponwashing.Thisgraph referstothedatarecordedfromrepeatedperfusionsandwashingsfrom3P0-onlyratpreparations.Inallpanels,Cstandsforcontrol,andRfortherecoveryafterremovingthe drugfromthebath.Eachbarrepresentsthemean(verticallines=SEM).Asterisksindicateasignificantdifference:***P<0.0001;nsmeansnosignificantdifference:P>0.05.

A recording electrode on the phrenic motor root was uti- lizedtomonitorthespontaneous fictiverespiratory activity. In theexperimentsinwhichelectricalstimulationwasutilized,the stimulusvoltagewasadjustedtoelicitonlytheactivationoflow threshold,largediameter,sensoryfibers(see also[14–16]).The effectivenessofstimuliwasevaluatedbyrecordingboththefiber dischargefromthesameactivatedsensorynervestumpandthe relatedHreflexonthehomologousventralroot(Fig.2,diagram above). The threshold of the H reflex (T) was determined and thepulsevoltagewasdefinedas3timesthethresholdpotential.

Theexperimentswerecarriedoutexclusivelyonbrainstem–spinal cordpreparationsthatpresentedastablefictiverespiratoryactiv- ity and H reflex from the fourth cervical (C4) ventral root (Figs.1Aand2A).

Dataisexpressedasmean±SEM.Statisticalanalysiswasper- formedbymeansof theGraphPadPrism4 program(GraphPad Software,Inc.)usingone-wayanalysisofvariance(ANOVA)with Bonferroni’s post-test. Fitting analysis with exponential equa- tions was conducted with the Clampfit 10 (MDS Analytical Technologies).

3. Results

3.1. Brainstem–spinalcordviabilityandcharacterization

Some preliminary experiments were carried out in order to check the functional integrity of the model. At the begin- ningof each experimental session thefrequency of the fictive

Fig.2. Lowthreshold,largediameter,fiberactivationinducedanincreaseinphrenicburstfrequency.(A)ontheleftadiagramofatransversesectionofthespinalcordatthe fourthcervicalneuromere(C4)isshown,indicatingthesitesofplacementofthedorsalrootstimulatingandrecordingelectrodes,andtherecordingelectrodeonthemotor rootofthephrenicnerve.Ontheright,theuppertraceindicatesatypicaldorsalrootrecordingoftheafferentvolleyinducedbymeansofalowvoltagepulseonthesame rootstump(blacktriangle);theamplitudeoftheafferentvolleywasconstantduringthewholeexperiment.ThelowertraceindicatestheHreflexfromtheventralroot.The shadedareaofthevoltageoscillationswithin20msafterthedorsalstimuluswasdeterminedasameasureoftheamountofreflexvs.thestimulusintensity.(B)Histogram barchartindicatingthattheburstfrequencyincontrolconditions(C)increasedduringelectricalstimulationofthedorsalrootatlevelC4,utilizing500mstrainsofvoltage pulses50␮seach,repeatedevery50ms.Thepulsetrainswererepeated,onepulsetrainevery3minfor5repetitions.Theburstfrequencydroppedtocontrollevelsduring therecovery,attheendofstimulation(R)(n=6).Eachbarrepresentsthemean(verticallines=SEM).Asterisksindicateasignificantdifference:***P<0.0001;nsmeansno significantdifference:P>0.05.

(4)

generationoftherhythmicdischargeinotherpacemakercellsin theCNS,wasused.Amiloride(0.5mM)whenaddedtotheaCSF recording solutionreduced the burstfrequency (6 rat prepara- tions; P 0 to 4).All the effects were completely reversed in a fewminutesafterwashingoutthedrug.Fig.1Dshowsthedata recorded during repeated perfusions and washings, from 3 P0 preparations.

3.2. Fourthcervicaldorsalrootstimulation

Inaseriesoftenexperimentsthepossibilitytomodulatethe motoroutputfromtheC4nervebymeansofstimulationoflow thresholdsensoryfibersofthehomologousandhomolateralposte- riorroot(putativesensoryfibersfromthephrenicproprioceptors) wasevaluated.Trainsofstimuliof500msdurationweredelivered ontothedorsalroot.Withinthetrain,50␮svoltagepulseswere repeatedevery50ms.Thepulsevoltagewaspreviouslydetermined asnomorethan3timesthethresholdvoltagenecessarytoevoke theH-reflexonthehomologousventralroot.Atthisvoltage,the monosynapticventralreflexachievedabout95%ofitsmaximum intensity(whichwasevaluatedmeasuringtheareaofthevolt- ageoscillationwithin20msafterthedorsalstimulus;Fig.2A)and, onthedorsalroot,onlythepeakindicatingtheactivationoflow threshold,largediameter,sensoryfibers,putativeIandpossiblyII fibers,waspresent(Fig.2A).Utilizingthisstimulationparadigm,a shorttermfacilitationofthephrenicmotorneuronswasobserved.

Since,itisreasonabletoassumethattheintegratedburstampli- tudeis proportional tothephrenicnerve activityand thetidal volume[17],insomeexperimentstheareaofthebursts(i.e.the areadefinedbythepotentialprofileand thebaseline;Vs)was measuredincontrolledconditions,andafterlowthreshold,fiber activation.Thestimulationofthefibersoflargediameter,inside thedorsalroot,increasedthephrenicburstdischarge.Thefacili- tationlastedonlyforafewsecondswithasignificanteffectonly evidentonthefirstburst.Then,thedischargedroppedtocontrol levelsasshowninFig.3.Inanotherseriesofexperiments,pulse trainswererepeated,onepulseevery3minforatotaloffiverepe- titions.Thelargediameter,lowthreshold,fiberactivationinduceda strongincreaseinburstfrequencyimmediatelyafterthefirstpulse train,comparedtothatofcontrol.However,attimes,itincreased slightlyfollowingthesecondandthirdpulsetrains,butthentended tostabilize.Thehighburstfrequencypersistedforabout10–15min aftertheendofstimulation,thenreturnedtocontrollevels(Fig.2B).

3.3. Operantconditioning

Inordertoexaminehowsensoryinputs,eithercontingentor non-contingentontheburstsinC4ventralrootsmayaffecttheir rhythmofdischarge,anoperantconditioningprotocolwasdefined forthefictiverespiratoryactivity.Toallowabettercomparison

Fig.3.Lowthreshold,largediameter,fiberactivationinducedashorttermfacilita- tionofthephrenicmotorneurons.TheupperdiagramshowsarecordingfromtheIV cervicalanteriorrootbeforeandafterstimulationofthehomologousdorsalroot.

FortheX-axisrefertothelowergraph,thestimulationisindicatedbyblacktri- angle.Thestimulusartifacthasbeenblankedoutforclarity.Thestimulusprotocol consistedofa500mstrainofpulses.Theareaofthebursts[Vs]i.e.theareadefined bythepositiveandnegativepotentialoscillationsandthebaseline,comprisedina arbitrarilyfixedtimeintervalof1shasbeenmeasuredincontrolconditionsand aftersensoryfiberactivation.Thenormalizedvalues(verticalbars)areplottedon thegraphbelow.Onthesamegraph,thebasaldischargerecordedduringtheinter- burstintervalshasbeenplottedforcomparison(filledsquares).Thestimulation inducedatransientincreaseintheareaoftheburststhatreturnedtocontrolvalues withinafewseconds.Thedecayoffacilitationhasbeenfittedwithamonotonic functionwithatimeconstant=3.3±0.62sSE(thinline).

between the effects of contingent and non-contingent operant stimulationitwasnecessarytominimizethedifferencesinspon- taneousfictiverespirationfrequency.Therefore,theexperiments werecarriedoutonpreparationsfromratsdividedintotwosetsfir- ingalmostatthesamefrequency.Tomeetthesecriteria,theywere chosenfromthesamepostnatalday(P3),andhadbeenselected afteraperiodofcontrolduringwhichthefrequencyofburstdis- chargewasassessed.Afterthat,thetrainingperiodfollowedonthe firstsetofpreparationsandthecontingentprotocolwasapplied.

A500mspulsetrainactivatinglowthresholdfibersinC4dorsal rootwasseteverytimethataburstwasdetectedinthehomolo- gousventralroot.Thetrainwassetwithanintervalof700msfrom thebeginningofeachburst.Theprotocolwasrepeatedforfour sessions,eachof200s(separatedbyintervalsofabout4min).This protocolofstimulationinducedastrongincreaseinburstdischarge and,unliketheexperimentspresentedinFig.2B,thefrequencyof dischargedidnotreturntocontrollevelsafterstoppingstimula- tion,evenaftermorethan1h(Fig.4A).Toevaluatethecontribution ofoperant-stimulationcontingencyindeterminingthelongterm effects observed,anotherexperimentwascarriedout,this time onthesecondsetofpreparations,inwhichthesamenumberof stimuliwasset,however,withoutcontingency.Inthissecondset ofexperiments,theburstfrequencyincreasedonlymoderately,and returnedtocontrollevelswithinafewminutesafterstimulation wasended(Fig.4B).

(5)

Fig.4. Thefictiverespiratoryactivitywasstudiedbymeansofanoperantconditioningparadigmtotesthowsensoryinputs,bothcontingentandnon-contingent,onthe burstsdetectedinphrenicmotorrootmayaffectburstfrequency.(A)Theupperdiagramshowstheexperimentalprotocol,inwhichcontingenttrainstimuli(triangles) activatingIaandIIfibersinC4dorsalrootwereseteverytimethataburstinthehomologousventralroot(verticalbarsinthetraceabove)wasdetected.Thebarchartbelow summarizestheresultsoftheseexperiments.Theprotocolwasrepeatedin4sessionsof200sdurationeach,andseparatedbyintervalsofabout4min.Thisprotocolof stimulationinducedalongtermincreaseinburstdischargethatpersistedfortheentiredurationofobservation,whichwasmorethan1hour(n=10).(B)Controlexperiments, inwhichbrainstem–spinalcordpreparationsofthesamepostnatalday(P3)andalsothesamefictiverespiratoryfrequencyasthoseutilizedinA,weresubjectedtothe samenumberoftrainstimulisetatregularintervalsoftimeandnon-contingentontheburstsrecordedfromthephrenicroot.Stimulationonlymoderatelyincreasedthe burstfrequencyandtheeffectpersistedforonlyafewminutesaftercessationofstimulationindicatingthatcontingencywasessentialinconsolidatingthememorytrace (n=9).Eachbarrepresentsthemean(verticallines=SEM).Theasteriskindicatesasignificantdifference,*P<0.05;***indicatesP<0.0001;nsmeansnosignificantdifference P>0.05.

4. Discussion

4.1. Thebrainstem-spinalcordpreparationisasuitableinvitro modelforthestudyofrespiratoryrhythmconditioning

Brainstem–spinal cord preparation from newborn rats was introducedasanexperimentalmodeltostudyfictiverespiratory activityalmost30yearsago[6].Thecharacterizationoftheprepa- rationsshowedparametersinagreementwiththosereportedinthe literature.Therelativelylowfrequencyoftherespiratorybursts, comparedtothefrequencyofventilationinvivoinnewbornrats (1.5Hz),maybeexplainedbythelackofsensoryinput,asalready suggested[6,18]andconfirmedfromthedatapresentedhere.The lackofdescendingexcitatorydrivetorespiratorynucleimustalso betakenintoaccount[4,19].Therespiratorycontrolnetworkin rapiddevelopment, withits ongoing myelination, couldbethe main reason for the striking age-dependent decrease in motor burstfrequencyshowninFig.1B.Infact,anincreaseinmyelin- atedfibersandaparalleldecreaseinunmyelinatedfibershasbeen described in thephrenic nerve of the rat between P0 and P4, withlargeaxonsthatmyelinateearliercomparedtosmalleraxons [20,21].

As expected, the fictive respiratory frequency promptly respondedwhenthepHoftheaCSFwasaltered(Fig.1C)[6,22]

confirmingtheviabilityofthepreparations.

Thefictiverespiratoryfrequencywassignificantlyreducedby thediureticamiloride (Fig.1D), a drugknown asa nonspecific blockerofacid-sensingionchannelsASIC[23–25]andoflowvolt- ageactivatedcalciumcurrentsICaLVA[26–28].Bothchannelsexert anexcitatory action. Thus, we should expect that theblocking effectsofamiloridewouldreducetheburstingactivityofthepace- makerneuronsandthefictiverespiratoryfrequency.Inparticular, ICaLVA,whichisfoundinpreBötCneuronsfromnewbornrats[29]

andknownalreadytocontributetotheburstingpacemakeractivity inotherpartsofthecentralnervoussystem[30,31],mayplayarole inburstingpacemakerneurons,byinfluencingthefictiverespira- toryoutputatthisearlystageinsynergywithotherrhythmogenic

mechanisms[10,32,33]. However,otherdrugactions cannotbe excluded.

4.2. Therespiratorycircuitsinthepreparationretainplastic properties

The data presented suggests that the activation of the low thresholdafferent fibers inthe dorsalC4 stumpincreasesven- tilation through both thenumber and amplitudeof inspiratory acts, although thelattereffect is verybriefcompared withthe former one. On the whole, these results show that the neces- saryplasticity,foroperantconditioningprotocolstobeeffectivein shapingthefunctionsofrespiratorycircuits,isretainedininvitro brainstem–spinalcordpreparation.Theyconfirmthatthestruc- turesabovethefacialmotornucleusandtheparafacialrespiratory group are not necessary to establish an operant conditioning- likeprocessinthespinalcord[34]andextendthisnotiontothe circuitsresponsibleforrespiratorycontrol.Moreover,thisprepa- ration,excludinganyperipheralstructure(e.g.muscles,receptors, etc.)allowsthestudyoftheneuralmechanismofconditioningand excludestheunavoidableeffectsofstimulationofthesestructures thattypicallyaffectwholeanimalexperiments.

IfthepreBötCnucleus generatestheinspiratory rhythm[8], thenwecaninferthatsensoryfiberactivationup-regulatesthe pacemakeractivityofthepreBötCnucleus,andviceversa,inagree- mentwiththeobservationsthatbilateralsensorydeafferentation andvagotomystronglyreducedtherespiratoryfrequencyinthe rat [18]. Themethodadopted todefine theintensityof stimu- lationisbasedonboth themonitoringoftheafferentvolleyon thedorsalroot, andontheventralmotor outputwhich hadto belimitedtotheH-reflexwithoutanyevidentpolysynapticactiv- ity(Fig.2A).Thisguaranteeswithreasonableconfidencethatthe effectsobservedwerederivedfromthespecificstimulationoflow thresholdfibers,putativeproprioceptivetypeIandpossiblyII.On theotherhand,anincreaseinvoltageofthestimulationtorecruit medium threshold sensory fibers induced the opposite effect

(6)

output.

Direct proprioceptive stimulation of the limbs and the low thresholdfiberactivationincervicaldorsalrootshavebeenindi- catedtoinducesynchronizationoftherespiratoryrhythminthe newborn rat [37]. Also, this mechanism does not seem to be involvedinthephenomenashownhereforatleasttworeasons.

Oneisthatlimbmovementsorstimulationofthelimbpropriocep- tiveafferentsinducealocomotor–respiratorycouplingbutnotan increaseinrespiratoryfrequencyinnewbornrats.Thesecond,even morestringent,isthattheeffectsinducedbylimbproprioception ontherespiratoryrhythmaremediatedbythepontinePB/KFnuclei [37],butthesenucleiwerenotpresentinthebrainstem–spinalcord preparation.Inaddition,theobservationthatthephysicalremoval oftheponsincreasedtherespiratoryfrequencyisquiteinteresting [20].

Ontheotherhand,it seemsunlikely thatthediaphragmatic Golgitendonorgan afferents[21,38,39],areresponsible forthe increase in burst amplitudeor frequency. As emphasized by a viewpoint,theactivationofthesefibershasinhibitoryeffectson themotorneuronsinnervating thesamemuscle.Thus, theydo notseemgoodcandidatestoexplain theexcitatoryphenomena describedhere.However,thisviewhasbeenquestioned,asstated below.

Although the role of muscle spindle afferents from the diaphragmhasbeencontroversial,intheliteraturethereisdata showingthatduringrespirationatleastpartofthediaphragmatic musclespindlesfireinphasewiththeinspiratorycontractionof thediaphragm, and intense firingis present also duringcough reflexes. These observations configure the interesting possibil- ityofaregulatorymechanismofthediaphragmaticcontractions throughthefusimotoractivation[39].Thismechanismmayalso extend its influence even onthe Golgi tendonorgans. Indeed, two important factsmust betaken into account.(1) The Golgi tendon afferentsfrom one muscle contribute tothe functional controlof musclegroups as a wholeand,vice versa, theaffer- entinformationforwardedtoindividualmotorneuronsisaffected bythelength andtension ofmany muscles. Thisis incontrast withtheviewthatthefunctionofGolgitendonorgansistocon- tributetoafeed-backsystemcontrollingthehomonymousmuscle, since muscles are not normally activated in isolation and the afferentsfromseveralmuscles arefusedtogetherbeforereach- ingspecificmotorneurons[40,41].(2)Althoughtheseorgansdo nothaveaspecificcentrifugalsystemthatcontroltheirabilityto respond,theyarefrequentlyanatomicallyassociatedwithmus- clespindles toform dyads,inparallel [42,43]orin series with Golgireceptorsattachedtointrafusalfibers[43,44].Interestingly, ithasbeensuggestedthat,fortheircloseassociation,theywork togetherunder the fusimotor control, sensing both themuscle lengthand tension[41,45]. Iftheinhibitory actionof theGolgi tendon organs from one muscle act onother muscles, namely

Fig.5.Schemeforapossibleinterpretationofthemainexperimentalresults.Theupper whitesquarerepresentsthebrainstem–spinalcordpreparationandtheexperimen- tallayout,whiletheovalbelowshowsthemissingperipheralstructures,i.e.amuscle withamusclespindle.Assumingthattheoutputrecordedfromtheventralrootrep- resentsboththemotorcommandfortherespiratorymuscles(␣motorneurons)and thepredictionoftheshorteningofthemusclesthemselvessenttoneuromuscular spindles(␥motorneurons),itfollowsthatthestimulationoflargenervefibersin thehomologousdorsalrootrepresentsthesignalfromthespindlesthatindicates thediscrepancybetweenthedesiredandtheactualshortening,i.e.theerror.This signal,conveyedtothecentralnervoussystem,changestheexcitabilitythelow motorneurons,whichmayaffecttherespiratoryburstintensity,andthepacemaker whichinturnadjuststheburstfrequency.

theantagonists, and thesereceptors workunder thefusimotor control,than,theymayactcoherentlywiththemusclespindles inaneuralnetworkorganizingthepatternofactivityinmuscle regions.

4.4. Atheoreticalframeforinterpretingtheexperimentalresults:

operantconditioningvs.forwardmodel

A scheme for a possible interpretation of the main experi- mental resultsis showninFig.5.Theinspiratoryresponsesare mediated by both a direct effect on the ␣ motorneurons, and alsobya low thresholdmechanism,representedby the␥neu- ronsandthespindleloop.Whilethe␣motorneuronsinducedirect contractionofmuscles,thespindleloopactivationdeterminesthe magnitudeofthe␣motorneuronsactivation[46]inordertoobtain thenecessarytensiontoreachdesiredmusclelength.Ifweassume a forward modelsystem [47,48]todescribe thesensory-motor systeminvolvedintherespiratorycontrol,thenthe␥neuronacti- vationmayberegardedastheeffectofa‘corollarydischarge’i.e.

asignalthat,inparallelwiththeefferencesignal,resultsinthe␣ and␥motorneuronsco-activation.Thecorollarydischargeissup- posedtorepresentthepredictionoftherespiratorymovements.If themovementiscorrect,thentheintrafusalandextrafusalmus- clefiberswillshortentothesameextent,andnoerrorisdetected.

Theerrorsignalhereshouldberepresentedbyachangein fre- quency of the discharge of theneuromuscular spindle sensory afferents.Thissignal,inthewholeanimal,isfedbackandconveyed totheCNSthroughthedorsalrootsensorynerves,whereasinthe

(7)

brainstem–spinalcordpreparationthisafferenceandrelatedmus- clespindlesareabsent.However,inthisinvitropreparationitis possibletoartificiallyproduceanerrorsignalactivatingdirectly thespindle afferentsbydirect stimulationofthelow threshold fiberspresentinthedorsalrootstump.Accordingtothemodel, themeaning(salience)ofthissignalisthattheextentoftheinspi- ratorymovementislessthanexpected;i.e.theintrafusalmuscle fibersshortenmorethantheextrafusalfibers,andthisdifference isdetectedbythestretchsensor.

As predicted by the forward model, and in analogy to the

‘length-tension inappropriateness’[49] proposedtoexplain the pathophysiologyofdyspnea(forreviewsee[50]),proprioceptor sensoryfiberactivationcontingentonburstdischarge,represents anerrorsignalfromthemusclespindlesthat,inthisway,inform theCNSaboutanunexpectedmusclelength.Inthemodeloutlined here,theneuromuscularspindleitselfisthepostulated“difference”

calculator,atthelowesthierarchicallevelofmotorcontrol.Thesig- nalisfedbackontothemotorneurons(Fig.5)tomodifycoherently themotorpattern.Thedatapresentedsuggeststhatadjustments areinvolvedforanincreaseinboththeefferentburststrengthand frequency.

Inaddition,insupportforaforwardmodelhypothesisisthedata obtainedutilizinganoperantconditioningparadigm.Onlywhen proprioceptorsensoryfiberactivationwasinducedcontingenton therespiratorybursts,itwaseffectiveinestablishingalongterm increaseinspontaneousfictiverespiratoryfrequency(>1h).How- ever,thiseffectwasnotobservedwhenthesamenumberofstimuli wasdeliveredrandomly, withouttemporalcorrelationwiththe respiratoryburstdischarge.Confirmingproprioceptorsensoryfiber activationasa strongreinforcementofthepacemakerfunction, this suggeststhat proprioceptoractivationrepresentsa power- ful unconditionedstimulussuitable in establishinga long-term operantconditioning-likeprocess (i.e.it acquires thenecessary salience)onlywhencorrelatedwiththerespiratoryrhythm,pro- vidingamechanismbywhichtheforwardmodelmaybeupdated over both short and long term time-scales [47]. On the other hand,nolongtermincreaseinburstareawasobservedinoper- antconditioningexperiments,suggestingthatthiseffectperhaps requiresothernervestructureswhich werenotincludedinthe preparation.

Inoperantconditioning,thereward/punishmentvalueisafun- damentalcharacteristicoftheconditioningstimulus.Pleasureor displeasure depends on the quality of the stimuli and on the internalstateofthesubject.Thesequalitiescorrelatetotheben- efitsordangersofthestimuliwithreferencetothehomeostasis, motivatingusefulbehavior[2].Thus,aquestionarisesaboutthe reward/punishmentvalueofproprioceptorfiberactivation.Since theinternalstateofthesubjectisnoteasilyknown,acommon assumptionisthatwhetherastimulusisorisnotrewardingor punishingisonlyrecognizedbyitseffectsonthebehavioronwhich thestimulusiscontingent:arewardincreasingtherateandvice versa.

In the present experiments low threshold fiber stimulation, theerrorsignal,contingentontherespiratorybursts, indicating thattheinspiratorymuscleshaveshortenedlessthanexpected, itshouldassumethesalienceofaninsufficientinspiration,likely responsible,atleastinpart,forthesensationofdyspnea[51,52].An apparentcontradictionarisesconsideringtheoperantconditioning paradigm,inwhichanunpleasantstimulus,theerrorsignal,aslow thresholdfiberactivationissupposedtobeinthiscase,isexpected todecreasethelikelihoodofacertainbehavior,namelythebursts.

Areasonableexplanation,thatreconcilesboththeforwardmodel hypothesisandtheoperantconditioningparadigm,maybethatthe proprioceptorsactivationisnotinterpretedbythenervoussys- temasaconsequenceoftheburstperse,butbytheeffectofan unexpectedinsufficientrespiratorycommandthatresultsinapoor

inspiratoryact.Withthisperspectiveinmind,theobservationthat theburstsresultstrengthened,andalsotheirfrequencyincreased, asaresultofanerrorsignal,gainconsistency.

4.5. Conclusions

Inconclusion,thedatapresentedsuggeststhattherhythmic discharge of the respiratory pacemakers undergoes long term adaptationfollowingcontingentproprioceptiveinput.Thisoccur- rence is generally interpreted as operant conditioning,since it presents all the paradigmatic elements of this type of learn- ing.Thisassociative learningmodelseemsofparticularinterest because,inasimplifiedcontextinvitro,itofferstherarepossibil- itytostudyanoperantconditioning-likeprocessofaspontaneous behaviorofmedicalrelevanceatahighmammalianphylogenetic level.

Althoughweareaware thatthetheoreticalframesuggested needsfurtherinvestigationstobevalidated,ifweassumethatthe afferencefromtheneuromuscularspindlesmayrepresentanerror signalasithasbeenproposedinaforwardmodelforthecontrol ofmovement,then,wecanhypothesizethattheoperantcondi- tioningparadigmproposedbythebehaviorists,andtheoldand evergreenforwardmodelmaycoexistinonecoherenttheoryhelp- fultobetterunderstandthemechanismsofmotorlearningandthe pathophysiologyofrespiratoryneuralcontrol.

Acknowledgements

WearegratefultoMs.ColletteO’Gradyforhelpinpreparing themanuscript.ThisresearchwassupportedbytheUniversityof Milan,DEPTfund14-13-3009009-8.

References

[1]ThorndikeEL.Aproofofthelawofeffect.Science1933;77:173–5.

[2]CabanacM.Sensorypleasure.QRevBiol1979;54:1–29.

[3]SkinnerBF.Thebehavioroforganisms,anexperimentalanalysis.NewYork, London:D.Appleton-CenturyCompany;1938.

[4]SmithJC,AbdalaAP,BorgmannA,RybakIA,PatonJF.Brainstemrespiratory networks:buildingblocksandmicrocircuits.TrendsNeurosci2013;36:152–62.

[5]Braun MH, Lukowiak K.Intermediateand long-term memoryare differ- entattheneuronallevelinLymnaeastagnalis(L.).NeurobiolLearnMem 2011;96:403–16.

[6]SuzueT.Respiratoryrhythmgenerationintheinvitrobrainstem-spinalcord preparationoftheneonatalrat.JPhysiol1984;354:173–83.

[7]Thoby-BrissonM,GreerJJ.Anatomicalandfunctionaldevelopmentofthepre- Botzingercomplexinprenatalrodents.JApplPhysiol2008;104:1213–9.

[8]FeldmanJL,DelNegroCA.Lookingforinspiration:newperspectivesonrespi- ratoryrhythm.NatRevNeurosci2006;7:232–42.

[9]SmithJC,EllenbergerHH,BallanyiK,RichterDW,FeldmanJL.Pre-Botzinger complex:abrainstemregionthatmaygeneraterespiratoryrhythminmam- mals.Science1991;254:726–9.

[10]KoizumiH,SmithJC.PersistentNa+andK+-dominatedleakcurrentscon- tributetorespiratoryrhythmgenerationinthepre-Botzingercomplexinvitro.

JNeurosci2008;28:1773–85.

[11]St-JohnWM,StornettaRL,GuyenetPG,PatonJF.Locationandpropertiesof respiratoryneuroneswithputativeintrinsicburstingpropertiesintheratin situ.JPhysiol2009;587:3175–88.

[12]PagliardiniS,RenJ,GreerJJ.Ontogenyofthepre-Botzingercomplexinperinatal rats.JNeurosci2003;23:9575–84.

[13]Johnson SM, Turner SM,Huxtable AG, Ben-MabroukF. Isolated invitro brainstem–spinalcordpreparationsremainimportanttoolsinrespiratoryneu- robiology.RespirPhysiolNeurobiol2012;180:1–7.

[14]LundbergA,WinsburyG.Selectiveadequateactivationoflargeafferentsfrom musclespindlesandGolgitendonorgans.ActaPhysiolScand1960;49:155–64.

[15]HuntCC.Relationoffunctiontodiameterinafferentfibersofmusclenerves.J GenPhysiol1954;38:117–31.

[16]JackJJB.Somemethods forselectiveactivationofmuscleafferentfibres.

In:Studiesinneurophysiology,essaysinhonourofProfessorAKMcIntyre.

Cambridge:CambridgeUniversityPress;1978.p.155–76.

[17]EldridgeFL.Relationshipbetweenphrenicnerveactivityandventilation.AmJ Physiol1971;221:535–43.

[18]MurakoshiT,SuzueT,TamaiS.Apharmacologicalstudyonrespiratoryrhythm intheisolatedbrainstem–spinalcordpreparationofthenewbornrat.BrJ Pharmacol1985;86:95–104.

(8)

[28]FormentiA,ArrigoniE,ManciaM.Low-voltageactivatedcalciumchannelsare differentlyaffectedbynimodipine.NeuroReport1993;5:145–7.

[29]ElsenFP,RamirezJM.Postnataldevelopmentdifferentiallyaffectsvoltage- activated calcium currents in respiratory rhythmic versus nonrhythmic neuronsofthepre-Botzingercomplex.JNeurophysiol2005;94:1423–31.

[30]HuguenardJR,PrinceDA.AnovelT-typecurrentunderliesprolongedCa(2+)- dependentburstfiringinGABAergicneuronsofratthalamicreticularnucleus.

JNeurosci1992;12:3804–17.

[31]FormentiA,DeSimoniA,ArrigoniE,MartinaM.Changesinextracellular Ca2+canaffectthepatternofdischargeinratthalamicneurons.JPhysiol 2001;535:33–45.

[32]RamirezJM,TrybaAK,PenaF.Pacemakerneuronsandneuronalnetworks:an integrativeview.CurrOpinNeurobiol2004;14:665–74.

[33]PaceRW,MackayDD,FeldmanJL,DelNegroCA.Inspiratoryburstsinthepre- Botzingercomplexdependonacalcium-activatednon-specificcationcurrent linkedtoglutamatereceptorsinneonatalmice.JPhysiol2007;582:113–25.

[34]Grau JW, Crown ED, Ferguson AR, Washburn SN, Hook MA, Miranda RC. Instrumentallearningwithinthespinalcord:underlyingmechanisms and implications for recovery after injury. Behav Cognit Neurosci Rev 2006;5:191–239.

[44]Barker D. The innervation of the muscle-spindle. Q J Microsc Sci 1948;89:143–86.

[45]JankowskaE,McCreaDA.SharedreflexpathwaysfromIbtendonorganaffer- entsandIamusclespindleafferentsinthecat.JPhysiol1983;338:99–111.

[46]AndersenP,SearsTA.Medullaryactivationofintercostalfusimotorandalpha motorneurones.JPhysiol1970;209:739–55.

[47]ProskeU,GandeviaSC.Theproprioceptivesenses:theirrolesinsignaling bodyshape,bodypositionandmovement,andmuscleforce. PhysiolRev 2012;92:1651–97.

[48]WolpertDM,GhahramaniZ.Computationalprinciplesofmovementneuro- science.NatNeurosci2000;3Suppl:1212–7.

[49]Campbell EJ, Howell JB. The sensation of breathlessness. Br Med Bull 1963;19:36–40.

[50]O’Donnell DE,Ora J, WebbKA, Laveneziana P,Jensen D.Mechanismsof activity-relateddyspneain pulmonary diseases. RespirPhysiol Neurobiol 2009;167:116–32.

[51]NishinoT.Dyspnoea:underlyingmechanismsandtreatment.BrJAnaesth 2011;106:463–74.

[52]GigliottiF.Mechanismsofdyspneainhealthysubjects.MultidiscipRespirMed 2010;5:195–201.

Riferimenti

Documenti correlati

1 se il desiderio è soltanto moderatamente ridotto ma non in modo tale da incidere sulla vita sessuale della coppia; 2 se negli ultimi tre mesi ha mostrato una riduzione del

They are used to obtain ultrapure water or to avoid back contamination from distribution loop to the final osmosis unit.. Ultrafilters reject contaminants in the

Se all’atto della fondazione di Santa Maria degli Angeli era già presente a Firenze il monastero camaldolese di San Salvatore e altri se ne aggiungeranno negli

La fascia collinare e basso-montana, fino a circa 900-1000 m, poco rappresentata nelle Riserve e individuabile nella parte bassa della foresta della Lama, nelle

Riqualificazione del giardino del chiostro minore della Certosa di Calci Stato attuale del giardino.. Relatore: Paolo Vernieri Correlatore: Cristina Nali Candidato:

Although we measured the equivalent width of Lyα for all the 3730 objects with a measured spectroscopic redshift (all the galaxies with spectroscopic flag 2, 3, 4 and 9, and also

de l’AD, dont le but principal est de « déconstruire les évidences », suivant l’expression efficace de Krieg-Planque (2012, p. 143), nous poursuivons deux objectifs majeurs :