• Non ci sono risultati.

Analysis of the use of reclaimed asphalt pavement (RAP) in Europe

N/A
N/A
Protected

Academic year: 2021

Condividi "Analysis of the use of reclaimed asphalt pavement (RAP) in Europe"

Copied!
99
0
0

Testo completo

(1)

POLITECNICO  DI  MILANO  

Scuola  di  Ingegneria  Civile,  Ambientale  e  Territoriale  

Master  of  Science  in  Civil  Engineering  

Transport  Infrastructure

 

 

Analysis  of  the  use  of  Reclaimed  Asphalt  

Pavement  (RAP)  in  Europe    

Relatore:  

 

Dott.  Emanuele  Toraldo  

Corelatore:  Ing.  Dario  Topini  

Xavier  Planas  Willis              815868  

 

 

 

 

Anno  accademico  2015/2016

 

 

(2)

 

 

 

 

 

 

 

 

 

   

 

 

A  mis  padres,  por  su  esfuerzo,  sacrificio  y  entrega  desinteresados.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3)

 

 

 

Acknowledgements    

First   of   all,   I   would   like   to   thank   Prof.   Ing.   Emanuele   Toraldo   for   giving   me   the   opportunity  of  participating  in  this  research,  and  for  the  supervision  and  advice  given  during  the   months  of  preparation  and  redaction  of  the  current  thesis.    

I   would   strongly   like   to   thank   Ing.   Dario   Topini,   because   without   his   help   and   fully   disponibility  when  needed  this  thesis  couldn’t  have  been  written.  Thank  you  for   always   being   helpful,  patient  and  friendly.  

I  would  also  like  to  thank  my  friend  Claudio  Lombardi,  because  he  has  always  worried   about  the  situation  of  the  thesis,  helping  me  and  giving  advice  when  needed.  

Finally,   I   would   like   to   acknowledge   my   family   because   nothing   would   have   been   possible  without  their  support,  not  only  for  the  economical  support  during  my  stay  in  Milano,   but   also   the   moral   and   psychological   one.   They   have   made   this   opportunity   possible   for   me,   helping  me  to  become  a  better  student  and  better  person.  

To  conclude,  I  would  like  to  thank  all  of  those  that  have  not  been  mentioned  directly,  

but  have  also  contributed  supporting  me  or  helping  me  on  the  realisation  of  this  project.  

 

 

 

(4)

 

Abstract

   

     

This   thesis   is   carried   out   with   the   aim   of   studying   and   analysing   the   current   situation   in   Europe  of  asphalt  recycling.  We  will  focus  not  only  on  the  present  situation,  but  also  on  how   this   recycling   of   the   so-­‐called   Reclaimed   Asphalt   Pavement   (RAP)   has   evolved   in   different   European  countries.  

Specifically,  what  is  wanted  to  study  in  this  project  is  the  total  amount  of  Available  RAP  that   each  country  has  and  how  this  amount  evolves  over  the  years.  Not  only  will  we  study  the   total  amount  of  available  RAP  in  each  country,  but  we  will  also  be  interested  in  knowing  the   effective  percentage  of  all  this  recycled  material  that  is  being  reused.    

Once   we   know   the   amount   of   Reclaimed   Asphalt   that   is   effectively   used,   we   will   be   interested  in  knowing  how  is  this  recycled  material  reused  in  different  countries.  We  will  see   that  all  of  this  RAP  can  be  reused  through  Hot  and  Warm  Recycling,  Half  Warm  Recycling,   Cold  Recycling,  or  even  can  be  used  in  the  Unbound  Layers  in  the  process  of  manufacturing  a   new  pavement.  

We  will  focus  on  detecting  which  countries  have  most  internalized  the  concept  of  recycling   asphalt  pavement,  being  these  ones  the  ones  that  recycle  most,  obviously.  

We  cannot  compare  the  recycling  of  several  countries  in  absolute  terms,  since  the  size  of  the   different  countries  will  vary,  or  even  the  amount  of  kilometres  of  paved  road  of  each  one.   That  is  why  an  analysis  that  compares  the  different  countries  in  Europe  taking  these  factors   into  account  will  be  also  done.  

 

The  thesis  is  structured  in  the  following  Chapters:    

Chapter  1,  Introduction:  This  is  the  opening  chapter;  which  provides  an  overview  of  

the  context  in  which  the  work  has  been  developed.  A  brief  explanation  of  different   technical  terms  is  made,  as  well  as  a  historical  contextualization  and  the  advantages   for  recycling  asphalt  pavement.  

Chapter  2,  EXAMPLE:  Case  Study  of  Asphalt  Recycling  in  Italy:  This  chapter  gives  an  

example   of   a   real   case   study   of   Asphalt   Pavement   Recycling   in   Italy,   the   country   where  this  thesis  is  being  developed.    

(5)

Chapter   3,   Introduction   to   EAPA:   In   this   Chapter   we   introduce   EAPA   (European   Asphalt   Pavement   Association),   which   is   the   main   organism   from   where   we   have   obtained  the  data  to  carry  on  with  our  study.    

Chapter  4,  Total  Production  of  Asphalt  and  Total  Available  RAP:  On  this  chapter  we  

start  to  work  on  our  final  goals  of  the  project.  A  study  is  carried  out  in  order  to  find   out   the   amount   of   Total   Asphalt   Production   and   the   Total   Available   RAP   in   every   country.   These   total   values   are   seen   and   compared   to   the   ones   in   the   past   years,   observing  their  evolution  during  time,  for  several  European  countries  being  studied.    

Chapter   5,   Comparing   Countries:   In   this   chapter   we   can   see   a   comparison   of   the  

behaviour  of   different  countries  in  Europe  with  regards  to  asphalt  production  and   availability   of   RAP.   To   compare   countries   appropriately,   a   relativisation   has   been   done,  taking  into  account  the  paved  road  distance  on  every  country  being  studied.  

Chapter  6,  Reuse  of  Reclaimed  Asphalt:  This  chapter  constitutes  the  main  body  of  

the  project.  A  study  is  carried  out  in  order  to  find  out  how  much  of  the  amount  of   Total  Available  RAP  is  effectively  being  reused  in  every  country,  and  once  found  out,   how  is  it  being  reused.  A  final  analysis  of  the  data  is  also  done  in  this  section.  

Chapter   7,   Conclusions:   This   is   the   final   chapter.   Here   we   put   altogether   the  

information  found  in  previous  chapters,  commenting  on  the  reasons  for  each  of  the   behaviours   of   the   different   countries   and   suggesting   future   researches   and   investigations  in  order  to  increase  the  RAP  recycling.    

 

 

With   this   thesis,   we   have   wanted   to   broaden   horizons   regarding   the   recycling   of   asphalt   pavement,   giving   a   global   view   of   its   use   in   Europe   and   proposing   alternatives   for   future   uses.  

 

 

 

 

 

 

 

 

 

(6)

Contents  

 

1. Introduction  

1.1. General  

1.2. History  about  Recycling  

1.3. What  is  RAP?  

1.4. How  is  RAP  recycled?  

1.5. Mechanical  Performance  of  RAP  

1.6. Advantages  of  using  RAP  

 

2. EXAMPLE:  Case  Study  of  Asphalt  Recycling  in  Italy  

2.1. Location  of  the  Case  Study  

2.2. The  situation  before  the  intervention  

2.3. Description  of  the  intervention  

2.4. Preliminary  studies  and  final  choices  

2.5. Problems  during  the  operations  

2.6. Final  Results  

 

3. Introduction  to  EAPA  

 

4. Total  Production  of  Asphalt  and  Total  Available  RAP  

4.1. Total  Production  of  Hot  &  Warm  Mix  Asphalt  

4.2. Total  Available  Reclaimed  Asphalt  Pavement  

4.3. Percentage  of  Available  Reclaimed  Asphalt  Pavement  

 

5. Comparing  Countries  

 

6. Reuse  of  Reclaimed  Asphalt  Pavement  

6.1. How  much  RAP  is  reused?  

6.2. How  is  RAP  reused?  

6.2.1. Hot  &  Warm  recycling  

12  

12  

14  

16  

18  

21  

24  

 

27  

27  

28  

29  

30  

31  

31  

 

33  

 

34  

35  

38  

42  

 

44  

 

50  

50  

54  

58  

 

(7)

6.2.1.1. Hot  Recycling  

6.2.1.2. Warm  Recycling  

6.2.2. Half  Warm  &  Cold  Recycling  and  Unbound  Layers  

6.2.2.1. Half  Warm  Recycling  

6.2.2.2. Cold  Recycling  

6.2.2.3. Unbound  Layers  

6.2.3. Results  Analysis  and  Reuse  Classification  

 

7. Conclusions  

 

References  

 

Appendix  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

58  

60  

66  

66  

68  

69  

76  

 

84  

 

89  

 

92  

 

(8)

 

 

 

List  of  Figures  

 

 

Figure  1.1:  Milled  Reclaimed  Asphalt  Pavement  (RAP)

 

 

Figure  1.2:  Different  images  of  pavement  recycling  in  various  years  during  history   Figure  1.3:  Milling  machine  grinding  up  asphalt  

Figure  1.4.1:  Scheme  that  shows  the  different  ways  of  Asphalt  Recycling   Figure  1.4.2:  Train  operations  for  HIPR,  from  Maurizio  Crispino,  Tecnica  delle   Pavimentazioni.  

Figure  1.4.3:  Image  showing  Cold  In-­‐Place  Recycling  

Figure  1.5.1:  Grading  curve  of  sub  base  with  only  natural  aggregates  and  with  50%  RAP   Figure  1.5.2:  LWD  Results  

Figure  1.6:  Accumulation  of  unprocessed  RAP  millings  in  a  stockpile   Figure  2.1.1:  location  of  Crema  in  Northern  Italy,  from  Google  Maps  

Figure  2.1.2:  Position  of  Crema  in  relation  to  the  most  important  cities  of  Lombardy,  from   Google  Maps  

Figure  2.1.3:  The  road  where  asphalt  recycling  was  carried  out,  from  Google  Maps   Figure  2.3:  Train  operations  using  of  foamed  bitumen  

Figure  2.4:  A  hole  left  after  a  probing  operation  and  some  cores   Figure  2.6:  The  road  in  June  2012,  from  Google  Maps

 

Figure  6.2.1.1.:  Hot  Recycling  of  an  urban  road   Figure  6.2.2.1.:  Bituminous  Emulsion  

Figure  6.2.2.2.:  Cold  in-­‐place  Asphalt  Recycling  

Figure  6.2.2.3.:  Spreading  an  Unbound  Aggregate  Base  Layer  

 

 

13   14   16   19     19   20   22   23   26   27     28   28   29   30   32   59   67   69   70        

(9)

 

List  of  Tables  

 

Table  2.4:  Final  choices  for  the  Works  

Table  4.1:  Total  Production  of  Hot  and  Warm  Mix  Asphalt  (in  million  tonnes)   Table  4.2:  Total  Available  Reclaimed  Asphalt  (in  million  tonnes)  

Table  5.1:  Relative  Values  of  the  Total  Production  of  Hot  &  Warm  Mix  Asphalt   (tonnes/km)  

Table  5.2:  Relative  Values  of  the  Total  Available  Reclaimed  Asphalt  (tonnes/km)   Table  6.1:  Percentage  of  Reuse  of  the  Available  Reclaimed  Asphalt  

Table  6.2.0.1.:  Recycling  table  provided  by  EAPA  about  year  2013   Table  6.2.0.2.:  Example  of  Blank  table  for  one  Country  

Table  6.2.1.:  Total  percentage  of  RAP  destined  to  Hot  and  Warm  Recycling  (%)   Table  6.2.2.1.:  Half  Warm  Recycling,  Cold  Recycling  and  Unbound  Layers   Table  App.1:  Percentage  of  RAP  in  Denmark  and  how  it  is  Reused   Table  App.2:  Percentage  of  RAP  in  France  and  how  it  is  Reused   Table  App.3:  Percentage  of  RAP  in  Germany  and  how  it  is  Reused   Table  App.4:  Percentage  of  RAP  in  Italy  and  how  it  is  Reused  

Table  App.5:  Percentage  of  RAP  in  Netherlands  and  how  it  is  Reused   Table  App.6:  Percentage  of  RAP  in  Norway  and  how  it  is  Reused   Table  App.7:  Percentage  of  RAP  in  Spain  and  how  it  is  Reused   Table  App.8:  Percentage  of  RAP  in  Sweden  and  how  it  is  Reused   Table  App.9:  Percentage  of  RAP  in  Switzerland  and  how  it  is  Reused   Table  App.  10:  New  classification  of  the  Reused  RAP  in  Denmark   Table  App.  11:  New  classification  of  the  Reused  RAP  in  France   Table  App.  12:  New  classification  of  the  Reused  RAP  in  Germany   Table  App.  13:  New  classification  of  the  Reused  RAP  in  Italy  

Table  App.  14:  New  classification  of  the  Reused  RAP  in  Netherlands  

30   35   38   44     46   52   56   57   61   71   92   92   93   93   93   93   94   94   94   95   95   96   96   96  

(10)

Table  App.  15:  New  classification  of  the  Reused  RAP  in  Norway   Table  App.  16:  New  classification  of  the  Reused  RAP  in  Spain   Table  App.  17:  New  classification  of  the  Reused  RAP  in  Sweden   Table  App.  18:  New  classification  of  the  Reused  RAP  in  Switzerland  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

97   97   97   98    

(11)

 

 

List  of  Graphs  

 

Graph  4.1:  Total  Production  of  Hot  and  Warm  Mix  Asphalt  (in  million  tonnes)

 

  Graph  4.2.1:  Total  Available  Reclaimed  Asphalt  (in  million  tonnes)  

Graph  4.2.2:  Total  Available  Reclaimed  Asphalt  (in  million  tonnes)   Graph  4.3:  Evolution  of  the  percentage  of  RAP  

Graph  5.1:  Absolute  Values  of  the  Total  Production  of  Asphalt  and  Available  RAP   Graph  5.2:  Relative  Values  of  the  Total  Production  of  Asphalt  and  Available  RAP   Graph  6.1:  Percentage  of  Reused  RAP  

Graph  6.2.1.1.:  Percentage  of  Available  RAP  destined  to  Hot  and  Warm  Recycling   Graph  6.2.1.2.:  Evolution  of  Hot  and  Warm  Recycling  for  France  and  Spain  

Graph  6.2.2.1.:  Percentage  of  Available  RAP  destined  to  Half  Warm  Recycling,  Cold   Recycling  or  Unbound  Layers  

Graph  6.2.2.2.:  Evolution  of  Half  Warm  Recycling,  Cold  Recycling  or  Unbound  Layers  for   Denmark  and  Spain  

Graph  6.2.3.1.:  Distribution  of  the  Available  RAP  in  Denmark   Graph  6.2.3.2.:  Distribution  of  the  Available  RAP  in  France   Graph  6.2.3.3.:  Distribution  of  the  Available  RAP  in  Germany   Graph  6.2.3.4.:  Distribution  of  the  Available  RAP  in  Italy  

Graph  6.2.3.5.:  Distribution  of  the  Available  RAP  in  Netherlands   Graph  6.2.3.6.:  Distribution  of  the  Available  RAP  in  Norway   Graph  6.2.3.7.:  Distribution  of  the  Available  RAP  in  Spain   Graph  6.2.3.8.:  Distribution  of  the  Available  RAP  in  Sweden   Graph  6.2.3.9.:  Distribution  of  the  Available  RAP  in  Switzerland  

 

 

36   39   40   42   47   48   52   62   63     72     73   76   77   78   78   79   80   81   82   82    

(12)

 

1.  Introduction  

 

1.1.  General  

The  pavement  of  a  road  is  subject  to  the  continuous  action  of  traffic  and  meteorology.  These   two  factors,  together  with  the  natural  aging  of  the  materials,  make  the  pavement  suffer  a   process   of   progressive   deterioration.   This   aging   and   deterioration   of   the   road   entails   a   gradual  decrease  in  the  safety  and  comfort  levels  of  traffic,  which,  when  exceeding  certain   values,  require  a  conservation  operation.  

The  conservation  of  the  road  network  is  currently  an  aspect  of  great  importance  due  to  the   resources   that   mobilizes.   The   necessary   budget   for   the   maintenance,   as   well   as   the   environmental   problems   that   derive   from   it,   justify   the   search   for   new   techniques   that   allows  reducing  costs  and  is  respectful  with  the  environment.  In  this  context,  the  recycling  of   asphalt   pavements,   as   a   means   of   rationalizing   resources,   takes   a   renewed   role   and   becomes  a  necessity.

In   modern   times,   a   high   percentage   of   roads   and   highways   around   the   world   are   constructed  with  hot-­‐mix  asphalt.  As  the  infrastructure  ages  with  time,  these  highways  and   roads   must   be   maintained   and   rehabilitated.   Preserving,   maintaining   and   expanding   the   highway  and  road  infrastructure  require  a  continual  supply  of  the  natural  resources  that  are   used  in  pavements.  In  recent  years,  it  has  been  found  out  that  the  same  material  used  to   build   the   original   highway   system   can   be   reused   as   an   additional   source   of   asphalt   and   aggregate  materials  that  can  have  economic  and  environmental  advantages  when  used  as  a   partial  replacement  for  asphalt  mixture  material  components.    

Existing   asphalt   pavement   materials   are   commonly   removed   during   resurfacing,   rehabilitation   or   reconstruction   operations.   Once   these   materials   are   removed   and   processed,   the   pavement   material   becomes   Reclaimed   Asphalt   Pavement   (RAP).   This   RAP   contains   valuable   asphalt   binder   and   aggregate,   which   can   be   useful   for   other   road   rehabilitation  operations.  In  Figure  1.1  we  can  observe  a  picture  of  a  close-­‐up  view  of  milled   RAP  that  has  been  milled  and  stockpiled  from  an  existing  roadway.    

Nowadays,   in   Europe   we   count   on   50   million   tonnes   of   available   RAP,   from   which   approximately   70   per   cent   of   it   is   being   recycled,   making   the   asphalt   the   most   frequently  

(13)

RAP  is  most  commonly  used  as  an  aggregate  and  virgin  asphalt  binder  substitute  in  recycled   asphalt   paving,   but   it   can   also   be   used   differently,   such   as   a   granular   base   or   sub   base,   stabilized   base   aggregate   and   embankment   or   fill   material,   or   even,   in   other   construction   applications.    

Reclaimed  Asphalt  Pavement  is,  to  sum  up,  a  valuable,  high-­‐quality  material  that  can  replace   more  expensive  virgin  aggregates  and  binders.  

 

 

Figure  1.1:  Milled  Reclaimed  Asphalt  Pavement  (RAP)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(14)

1.2.  History  about  Recycling  

 

The   recycling   of   asphalt   in   the   pavement   industry   has   become   more   popular   as   time   has   gone  by.  It  is  in  1915  where  the  recycling  of  asphalt  pavements  takes  place  for  the  first  time   (Kandhal  &  Mallick,  1997).  Although  old  asphalt  mixtures  were  removed  and  disposal  of  in   landfills,   the   use   of   RAP   (Reclaimed   Asphalt   Pavement)   in   new   asphalt   mixtures   increased   considerably  during  1970s.  In  addition,  this  significant  use  of  RAP  in  hot-­‐mix  asphalt  started   in  the  early  1970s  due  to  extremely  high  prices  of  the  crude  oil  as  a  result  of  the  Arab  Oil   Embargo  in  1973.  This  oil  embargo  made  the  binder  prices  skyrocket  and  obliged  the  asphalt   paving  industry  to  find  a  solution  for  not  having  to  spend  so  much  money  on  it  with  similar   results   when   paving.     The   asphalt   paving   industry   reacted   to   this   situation   by   creating   or   developing   recycling   technologies   that   helped   reducing   the   demand   of   asphalt   binder,   so   consequently,  reducing  also  the  costs  of  the  asphalt  paving  mixtures.  Some  of  the  practices   that   were   developed   during   those   times   are   still   being   used   nowadays   and   have   become  

part  of  routine  operations  for  pavement  construction  and  rehabilitation.

 

 

 

 

Figure  1.2:  Different  images  of  pavement  recycling  in  various  years  during  history  

 

Inclination   towards   recycling   has   been   possible   principally   due   to   economic   savings   and   environmental  benefits.  With  regard  to  economic  savings,  it  must  be  taken  into  account  that   recycling   reduces   the   amount   of   new   asphalt   and   aggregates   being   used,   both   non-­‐ renewable   resources.   The   material   cost   savings   are   the   result   from   a   replacement   of   a   portion   of   virgin   aggregates   and   binders,   as   the   asphalt   and   aggregate   components   of   an  

(15)

asphalt  mix  constitutes  the  greatest  portion  of  the  cost  of  pavement  construction  (Copeland,   2011).   These   material   savings   are   not   only   profitable   for   our   economy,   but   make   the   recycling  practice  eco-­‐friendly,  as  the  energy  and  emissions  associated  with  the  extraction   and   transportation   of   the   raw   virgin   materials   mentioned   before   is   also   being   reduced.   Recycling   have   also   reduced   the   amount   of   space   used   for   landfilling   of   old   pavement   materials  removed  during  rehabilitation,  as  part  of  this  old  material  will  be  reused  and  will   not  occupy  unnecessary  space  on  the  ground.  

Since  recycling  started  to  gain  popularity,  two  basic  principles  of  asphalt  recycling  that  have   guided  our  actions  have  been:  

• Mixtures   containing   RAP   should   meet   the   same   requirements   as   mixes   with   all   virgin  materials.  

• Mixes  containing  RAP  should  perform  equal  to  or  better  than  virgin  mixtures.                                            

(16)

1.3.  What  is  RAP?  

 

The   acronym   RAP   stands   for   Reclaimed   (or   Recycled)   Asphalt   Pavement,   and   is   the   term   given   to   removed   and/or   processed   materials   containing   asphalt   and   aggregates.   These   materials   are   generated   when   asphalt   pavements   are   demolished   for   construction,   resurfacing,  or  to  obtain  access  to  buried  utilities.  When  properly  crushed  and  screened,  RAP   consists  of  high-­‐quality,  well-­‐graded  aggregates  coated  by  asphalt  cement.  RAP  is  one  of  the   most   important   elements   to   take   into   account   during   the   process   of   recycling   of   road   pavements,  since  it  has  great  influence  on  the  characteristics  of  the  final  product.  

RAP  is  generated  when  asphalt  pavements  are  removed  as  part  of  roadway  reconstruction   and   maintenance   (during   excavations   to   access   buried   utilities,   for   instance)   or   during   flexible  pavement  reconstruction  or  resurfacing  (milling).  

There   are   different   sources   from   which   RAP   may   be   obtained,   being   pavement   milling   operations  the  most  common  method.  There  are  other  RAP  sources  that  are  also  common,   such  as  full-­‐depth  pavement  demolition  and  waste  asphalt  plant  mix.  There  are  basically  two   steps  for  obtaining  RAP,  independently  of  the  source  from  which  is  going  to  be  obtained:  

1) First   of   all   we   must   identify   which   one   of   the   processes   we   are   going   to   use   to   acquire  RAP.  To  obtain  RAP  through  a  milling  process,  a  milling  machine  is  needed,   and   can   remove   up   to   two   inches   in   one   pass.   On   the   other   hand,   full-­‐depth   pavement   demolition   requires   pneumatic   pavement   breakers   or   a   bulldozer   fitted   with  a  rhino  horn.  By  doing  this,  the  pavement  is  crushed  down.  

On  Figure  1.3  we  can  see  a  milling  machine  that  grinds  up  asphalt  and  removes  it   efficiently  off  of  roadway  surfaces.  

 

 

(17)

 

 

2) Once   the   desired   material   is   crushed,   the   second   step   basically   involves   the   processing  of  this  resultant  material.  The  crushed  material  can  either  be  taken  to  a   central  plant  or  used  in  place.  For  the  first  option,  it  can  be  collected  and  loaded  into   trucks  for  transportation  to  a  central  processing  facility,  where  RAP  is  again  crushed,   screened,   conveyed   and   stacked.   Otherwise,   by   using   an   automatic   pulverizing   machine,  the  pavement  can  be  crushed  in  place  and  added  to  stabilized  or  granular   base  aggregate.  

 

According   to   the   "Asphalt   Recycling   Guide"   of   Austroads,   it   can   be   said   that,   in   general,   100%  of  the  recovered  materials  of  deteriorated  pavements  are  susceptible  to  be  recycled,   either   in   the   same   place   in   which   they   are   generated,   in   other   pavements   (more   usual   practice)   or   even   for   purposes   not   related   to   the   creation   of   any   other   pavements.   Generally,   the   use   of   recycled   mixtures   is   focused   on   the   rehabilitation   of   existing   pavements;   however,   they   can   be   part   of   new   construction   pavements,   without   this   meaning  a  problem  of  quality,  strength  or  durability.  

   

 

 

 

 

 

 

 

 

 

 

 

(18)

1.4.  How  is  RAP  recycled?  

 

Recycling  of  pavement  material  can  be  undertaken  as  an  in-­‐place  or  a  central  plant  process.   In  addition,  recycling  can  be  grouped  into  hot,  warm  and  cold  processes  depending  on  the   virgin  binder  deployed  in  the  recycling  operation.  

RAP  can  be  used  as  an  aggregate  in  the  hot  recycling  of  asphalt  paving  mixtures.  This  type  of   recycling  involves  the  heating  of  aggregates  and  the  mixing  process  is  done  at  150°C.  This   type  of  recycling  can  be  done  in  one  of  two  ways.  The  most  common  method  (conventional   recycled  hot  mix)  involves  a  process  in  which  RAP  is  combined  with  virgin  aggregate  and  new   asphalt  cement  in  a  central  mixing  plant  to  produce  new  hot  mix  paving  mixtures.  A  second   method   (hot   in-­‐place   recycling)   involves   a   process   in   which   asphalt   pavement   surface   distress  is  corrected  by  softening  the  existing  surface  with  heat,  mechanically  removing  the   pavement   surface,   mixing   it   with   a   recycling   or   rejuvenating   agent,   possibly   adding   virgin   asphalt  and/or  aggregate,  and  replacing  it  on  the  pavement  without  removing  the  recycled   material  from  the  pavement  site.  

RAP  can  be  used  as  an  aggregate  in  the  cold  recycling  of  asphalt  paving  mixtures.  This  type   of   recycling   does   not   involve   the   heating   of   aggregates   and   the   recycling   is   done   at   environment  temperature.  This  type  of  recycling  can  be  done  in  one  of  two  ways.  The  first   method   (cold   mix   plant   recycling)   involves   a   process   in   which   RAP   is   combined   with   new   emulsified  or  foamed  asphalt  and  a  recycling  or  rejuvenating  agent,  possibly  also  with  virgin   aggregate,  and  mixed  at  a  central  plant  or  a  mobile  plant  to  produce  cold  mix  base  mixtures.   The   second,   more   common,   method   involves   a   process   in   which   the   asphalt   pavement   is   recycled  in-­‐place  (cold  in-­‐place  recycling  (CIPR)  process),  where  the  RAP  is  combined  without   heat  and  with  new  emulsified  or  foamed  asphalt  and/or  a  recycling  or  rejuvenating  agent,   possibly  also  with  virgin  aggregate,  and  mixed  at  the  pavement  site,  at  either  partial  depth   or  full  depth,  to  produce  a  new  cold  mix  end  product.  A  lot  of  countries  have  used  cold  in-­‐ place  recycling  in  conjunction  with  a  hot  mix  overlay  or  chip  seal.  

(19)

 

Figure  1.4.1:  Scheme  that  shows  the  different  ways  of  Asphalt  Recycling    

After   the   scheme   displayed   in   Figure   1.4.1,   we   can   proceed   to   give   a   brief   description   of   these  techniques:  

Recycled  Hot  Mix  –  Reclaimed  asphalt  pavement  must  be  processed  into  a  granular  material  

prior   to   use   in   hot   mix   applications.   A   typical   RAP   processing   plant   consists   of   a   crusher,   screening  units,  conveyors,  and  stacker.  It  is  desirable  to  produce  either  a  coarse  or  a  fine   fraction  of  processed  RAP  to  permit  better  control  over  input  to  the  hot  mix  plant  and  better   control  of  the  mix  design.  The  processed  RAP  used  in  recycled  hot  mix  asphalt  should  be  as   coarse  as  possible  and  the  fines  (minus  0.075  mm  (No.  200  sieve))  minimized.  Gentle  RAP   crushing  (controlled  crusher  speed  and  clearance  adjustment  on  exit  gate)  is  recommended   to  minimize  the  fracture  of  coarse  aggregate  and  excess  fines  generation.  

Hot  In-­‐Place  Recycling  –  In  the  HIPR  process,  the  surface  of  the  pavement  must  be  softened  

with   heat   prior   to   mechanical   scarification.   The   HIPR   process   has   evolved   into   a   self-­‐ contained,  continuous  train  operation  that  includes  heating,  scarifying,  rejuvenator  addition,   mixing,   and   replacement.   This   train   operation   is   reflected   on   the   following   image   (Figure  

1.4.2):      

Asphalt  

recycling  

Hot  

recycling  

in  plant  

in  place  

Cold  

recycling  

in  plant  

in  place  

(20)

Cold   Plant   Mix   Recycling   –   Processing   requirements   for   cold   mix   recycling   are   similar   to  

those  for  recycled  hot  mix.  Recycled  asphalt  pavement  must  be  processed  into  a  granular   material   prior   to   use   in   cold   mix   applications.   A   typical   RAP   plant   consists   of   a   crusher,   screening  units,  conveyors,  and  stackers.  

Cold  In-­‐Place  Recycling  –  CIPR  (like  hot  in-­‐place  recycling  (HIPR)),  requires  a  self-­‐contained,  

continuous   train   operation   that   includes   ripping   or   scarifying,   processing   (screening   and   sizing/crushing   unit),   mixing   of   the   milled   RAP,   and   the   addition   of   liquid   rejuvenators.   Special  asphalt-­‐derived  products  such  as  cationic,  anionic,  and  polymer  modified  emulsions,   rejuvenators  and  recycling  agents  have  been  developed  especially  for  CIPR  processes.  These   hydrocarbon  materials  are  sometimes,  but  not  always,  used  to  soften  or  lower  the  viscosity   of   the   residual   asphalt   binder   in   the   RAP   material   so   that   it   is   compatible   with   the   newly   added  binder.  

On   the   following   image   (Figure   1.4.3)   we   can   observe   how   this   Cold   In-­‐Place   Recycling   is   been   carried   out.   There   is   cold   milling,   sizing/crushing,   mixing   with   emulsion,   reprofiling/placing  with  paver  and  compaction.    

 

 

Figure  1.4.3:  Image  showing  Cold  In-­‐Place  Recycling  

                 

(21)

1.5.  Mechanical  Performance  of  RAP  

 

The  mechanical  performance  of  a  road  or  pavement  is  one  of  the  main  worries  when  using   RAP.  Because  of  RAP’s  precedence  as  material  that  consists  of  aggregate  and  bitumen  that   has  been  removed  and/or  reprocessed  from  an  asphalt  pavement,  it  may  be  thought  that  it   will  not  be  able  to  handle  the  properties  requested  for  the  desired  road.  It  is  certain  that   Reclaimed  Asphalt  Pavement  is  produced  when  old,  damaged  pavement  materials  are  milled   and  crushed,  but  this  is  done  for  subsequent  addition  of  it  as  a  component  in  new  asphalt   mixtures.   So   that   this   old   material   can   be   reused   as   an   asphalt   pavement,   it   must   satisfy   different   requirements   regarding   to   mechanical   properties   and   behaviour   in   response   to   stretches   and   strain.   There   is   an   important   fact   that   must   be   satisfied   that   says:   Mixes   containing  RAP  should  perform  equal  to  or  better  than  virgin  mixtures.  

As  mentioned  in  the  previous  chapter,  RAP  can  be  used  in  different  modes  and  placed  on   different  places  of  the  pavement  (surface,  binder,  base,  foundation,  base  and  sub  base).  It  is   well   known   that   as   higher   the   layer   that   is   using   RAP   is,   the   more   requirements   or   mechanical  restrictions  that  there  will  be.  For  example,  the  surface  layer  of  a  pavement  will   have  to  deal  with  much  more  mechanical  exigency  than  the  sub  base  layers,  as  the  efforts   suffered   are   much   more   direct   to   the   higher   layers.   This   is   why   the   amount   of   RAP   being   reused  depends  also  on  the  layer  it  is  going  to  be  used.  In  hot-­‐mix  recycling,  EN  Specification   (EN  13108-­‐1)  suggests  using  no  more  than  10%  for  surface  layers  and  20%  for  binder  and   base   layers   (EN   13108   –   2006).   Exceeding   this   percentage,   additional   tests   are   needed   to   evaluate  the  effect  of  aged  binder  on  the  stiffness  and  durability  of  the  mix.  On  the  other   hand,   cold   recycling,   sometimes   allows   us   to   recycle   the   100%   of   RAP   extracted   from   the   bituminous  layers,  and  use  it  to  make  base  or  binder  layers.  This  is  why,  in  the  recent  years,   many  researches  have  been  carried  out  regarding  the  use  of  Reclaimed  Asphalt  Pavements   for  sub  base  layers.    

D’Andrea  et  al.    (2001)  [1]  suggest  that  the  use  of  RAP  for  sub  base  layer  and  subgrade  is  a   useful   solution   in   order   to   dispose   of   the   large   amount   of   waste   produced   during   maintenance  and  rehabilitation  activities.  

To   avoid   the   problems   related   to   the   excessive   deformations   provided   using   only   RAP   is   necessary  to  combine  it  with  other  type  of  aggregates,  such  as  virgin  or  Construction  and   Demolitions   aggregates,   that   are   able   to   strengthen   the   mixture   until   reaching   a   suitable   level  of  resistance  to  static  and  dynamic  loads.    

(22)

A  field-­‐testing  study  in  order  to  demonstrate  the  potential  of  use  RAP  as  a  pavement  base,   carried  out  by  Garg  N.  et  al    (1996)  [2],  demonstrated  that  the  performance  of  the  RAP  base   was   comparable   to   the   one   of   a   crushed   stone   base.   Some   years   later,   Cosentino   et   al     (2003)  [3]  studied  the  comparison  between  RAP  and  limerock’s  behavior,  and  by  using  the   Clegg  impact  hammer,  Falling  Weight  Deflectometer  (FWD)  and  Soil  Stiffness  Gauge  (SSG),   the  study  showed  that  RAP  achieved  80  to  115%  the  stiffness  of  limerock  during  the  eight   week  testing  intervals.  These  specific  tests  proved  that  the  stiffness  in  RAP  is  equivalent  to   limerock’s,  but  didn’t  take  into  account  other  important  properties  such  as  permeability.  So,   after  some  experiments,  it  was  found  out  that  adding  20%  of  virgin  aggregates  provide  the   best   strength   properties   and   at   the   same   time   maintains   a   reasonable   permeability   coefficient.   Furthermore,   they   demonstrated   that   the   addition   of   RAP   generally   improves  

the  drainage  characteristics  of  base  and  sub  base  layer  mixtures.  

 

A  study  realised  in  2012  by  Montepara,  Tebaldi,  Marradi  and  Betti  [4]  “Effect  on  Pavement   Performance  of  a  Subbase  Layer  Composed  by  Natural  Aggregate  and  RAP”  was  carried  out,   with  the  objective  of  evaluating  the  possibility  to  use  RAP  as  a  virgin  aggregate  supplement   into   unbound   mixture   to   be   placed   in   sub   base   layers.   To   achieve   this   objective,   different   non-­‐destructive   tests   were   carried   out   in   order   to   assess   the   short   and   long   term   performance  of  a  mixture  blended  with  50%  of  RAP,  comparing  results  with  those  obtained   on  a  mixture  composed  by  only  natural  aggregates.  

Different   tests   (LWD   and   FWD+GPR)   were   carried   out   by   using   two   consecutives   sections   (tracks)  30  m  long  and  5  m  wide  made  by  two  different  sub  base  mixture  compositions:  the   first   is   made   by   100%   natural   aggregates   while   the   second   is   a   blend   of   50%   natural   aggregates   and   50%   RAP.   Both   samples   should   have   the   same   grading   curve,   so   that   compaction  was  done  equally  on  both  cases.  On  Figure  1.5.1,  we  can  observe  both  grading   curves  used  to  carry  out  this  experiment:  

 

(23)

 

The   results   of   the   tests   showed   us   there   were   not   significant   differences   between   performance  of  a  sub  base  with  RAP  and  a  sub  base  with  only  virgin  materials.  

We   can   see   for   example,   in   the   results   of   the   LWD   test,   represented   in   Figure   1.5.2,   that   even   if   the   differences   were   not   significant,   the   energy   provided   to   the   soil   seems   to   be   slightly  higher  for  mixture  with  50%  RAP.  

 

 

Figure  1.5.2:  LWD  Results  

   

To  sum  up,  the  results  of  all  three  tests  carried  out  reflects  that,  in  this  case,  that  the  sub   base  made  by  blending  high  percentage  of  RAP  with  natural  aggregates  show  the  same  short   and  long  term  performances,  appearing  to  be  slightly  higher  than  the  one  with  only  natural   aggregates  in  it.  

                       

(24)

1.6.  Advantages  of  using  RAP  

 

The   increase   in   addition   of   RAP   to   pavement   mixtures   is   not   surprising,   given   that   the   availability   of   high-­‐quality   virgin   materials   is   declining   and   landfilling   is   becoming   less   practical  and  more  expensive  as  time  goes  by.  There  are  plenty  of  benefits  for  reusing  RAP   when  paving  new  roads.  These  benefits  can  be  attributed  to  the  reduction  in  costs  of  new   construction   and   rehabilitation   projects,   environmental   conservation   of   energy   and   the   preservation  of  road  geometry.  

Some  of  these  benefits  can  be  reflected  on  three  key  requirements  that  must  be  satisfied  for   a  recycled  asphalt  pavement  to  be  successful.  These  three  requirements  are  the  following:    

1) It  should  be  cost-­‐effective  

This   means   that   the   fact   of   using   a   recycled   asphalt   pavement   should   represent   a   lower   monetary  cost  than  using  fully  new  materials.  

2) It  should  be  eco-­‐friendly  

By   eco-­‐friendly   we   understand   that   the   use   of   the   recycled   asphalt   pavement   should   represent   a   loss   of   contaminating   emissions   with   respect   of   using   the   new   materials.   Not   only   this,   but   the   fact   of   using   recycled   materials   imply   that   there   is   not   an   unnecessary   waste  of  raw  or  new  natural  materials.  

3) The  recycled  asphalt  should  perform  well  

Its   properties   should   be   those   that   allow   the   pavement   to   work   under   the   corresponding   stresses  of  the  road.  

 

1)  It  should  be  cost-­‐effective  

As   in   almost   all   fields,   the   cost-­‐benefit   ratio   is   the   basis   of   much   of   the   initiatives   for   the   recycling   of   pavements.   For   this   reason,   it   is   very   important   to   make   a   careful   analysis   to   ensure   the   economic   feasibility   of   the   use   of   recycling   in   the   different   construction   and   rehabilitation  projects.  

Generally,  the  free  market  is  in  charge  of  regulating  and  promoting  the  reuse  of  materials  in   the  construction  of  roads,  due  to  the  savings  that  the  different  recycling  techniques  usually   generate.   However,   in   some   cases,   governments   must   promote   recycling,   through   restriction   of   the   use   of   landfills,   or   the   application   of   high   fees   for   the   discharge   or   exploitation   of   quarries,   or   giving   economic   or   technological   support   to   companies   that   make  efforts  to  recycle.  

(25)

The  recycling  of  asphaltic  pavements  implies  first  of  all  the  reuse  of  the  available  resources   in  the  current  road  or  pavement.  Aged  materials  can  be  reused  using  a  suitable  technique  so   that  they  are  again  valid  for  the  construction  of  the  firm.  With  this  type  of  techniques,  the   demand   for   materials   (aggregates,   bitumen,   etc.)   can   be   greatly   reduced   in   conservation   operations.  Not  only  costs  are  reduced  by  needing  less  new  virgin  materials,  but  the  fact  of   not  needing  to  find  quarries  and  landfills  near  to  where  the  works  are  being  realised  also   reduce  costs  improving  fabrication  efficiency.    

In  addition,  "in  situ"  recycling  methods  allows  us  to  avoid  transport  operations,  not  only  of   aged  materials  from  it’s  original  place  to  a  dump,  but  also  the  new  material’s  being  carried   from  their  point  of  supply  to  where  the  new  construction  or  rehabilitation  is  been  carried   out.    

Avoiding   these   unnecessary   transportation   operations   also   reduces   considerably   the   monetary  cost  of  the  corresponding  work.    

 

2)  It  should  be  eco-­‐friendly  

On  modern  times,  there  is  an  increasing  social  awareness  about  the  need  to  preserve  the   environment,  which  has  made  legislation  today  much  more  protectionist  than  in  the  past.   This  makes  it  difficult  to  obtain  suitable  raw  materials,  increasing  not  only  their  cost  but  also   transport  to  the  work,  as  they  are  almost  never  produced  where  they  are  needed.  Not  only   that   but   also   the   difficulty   in   finding   a   landfill   for   materials   removed   from   the   firm   at   a   reasonable  price  is  increasing.  These  problems  are  especially  important  in  urban  settings.   Recycling   of   old   pavements   presents   environmental   opportunities   and   challenges,   which,   when   appropriately   addressed,   can   maximize   the   benefits   of   re-­‐use.   The   use   of   most   recycled  materials  presume  no  threat  or  danger  to  the  air,  soil,  or  water.  Moreover,  careful   design,  engineering  and  application  of  recycled  materials  can  reduce  or  eliminate  the  need   to   search   for   and   extract   new,   virgin   materials   from   the   land,   being   less   harmful   for   the   environment.  

On   Figure   1.6,   we   can   see   a   stockpile   of   unprocessed   reclaimed   asphalt   pavement   (RAP)   millings  of  various  sizes.

     

(26)

 

Figure  1.6:  Accumulation  of  unprocessed  RAP  millings  in  a  stockpile  

   

3)  The  recycled  asphalt  should  perform  well  

The   disposal   of   aged   materials   of   the   firm,   in   addition   to   causing   problems   related   to   the   acquisition  of  new  materials  and  their  discharge,  is  technically  counterproductive  because,   despite  being  old,  they  retain  a  good  part  of  their  qualities.  

The   milling   and   reuse   of   the   asphalt   conglomerate   benefits   us   by   a   great   saving,   since   it   requires  a  very  little  amount  (1  –  3%)  of  additional  bitumen,  whereas  a  new  asphalt  concrete   may  need  much  more  (  >  6%).  This  aspect,  together  with  the  low  transport  costs  and  the  low   energy  required  for  the  production  of  a  solid  recycling,  make  the  energy  saving  important   for  conventional  pavement  construction.  

As  we  have  just  seen  on  the  previous  section,  it  is  very  important  that  the  Reclaimed  Asphalt   being  reused  in  the  new  pavement  can  deal  with  the  same  stresses,  as  raw  virgin  material   would  do.    

We  can  consider  very  positive  the  fact  of  having  recycled  material  that  can  suffer  the  same   efforts  as  new  virgin  material  when  building  a  new  pavement.  If  we  can  guarantee  that  the   use   of   this   material   will   not   be   harmful   to   anything   on   the   new   pavement   under   construction,   we   will   always   be   convenient   to   use   it,   as   we   save   costs   and   protect   the   environment.  

In   addition,   it   must   be   taken   into   account   the   fact   that   the   management   system   of   any   pavement  must  control  its  properties  (or  mechanical  performance)  throughout  its  useful  life.   This  way  you  can  decide  at  any  time  the  best  conservation  option  to  maintain  the  level  of   service  required  by  the  needs  of  the  user.  These  systems  aim  to  be  the  ideal  tool  to  find  the   optimum   time   and   procedure   to   perform   the   conservation   in   order   to   obtain   the   best   possible  result  at  the  lowest  cost  to  society.  

(27)

2.  EXAMPLE:  Case  Study  of  Asphalt  Recycling  in  Italy  

 

The  following  example  is  a  translation  and  adaptation  from  an  article  by  Cristiano  Rebecchi,   published  on  “La  rassegna  del  bitumen”  [5].  

 

2.1.  Location  of  the  Case  Study  

 

On  this  section,  we  will  talk  about  one  case  of  asphalt  recycling  carried  out  in  Italy  between   2003  and  2006.  

This   recycling   operation   was   executed   along   a   quite   important   road   located   in   Crema,   in   Northern  Italy.  

 

Figure  2.1.1:  location  of  Crema  in  Northern  Italy,  from  Google  Maps  

 

The   road   connects   Cremona   with   Milan   and   it   is   located   in   Lombardy,   the   region   of   the   country  where  are  located  most  economical  activities  and  it  is  characterized  by  much  traffic,   including  many  heavy  vehicles.  

(28)

  Figure  2.1.2:  Position  of  Crema  in  relation  to  the  most  important  cities  of  Lombardy,  from  

Google  Maps  

 

Figure  2.1.3:  The  road  where  asphalt  recycling  was  carried  out,  from  Google  Maps  

 

2.2.  The  situation  before  the  intervention

 

The  road  was  built  in  the  1980s  and  there  were  problems  since  it  was  opened,  due  mainly  to   the  settlements  of  the  base  course.  The  base  course  was  full  of  voids  and  this  was  the  main   cause  of  the  settlements.  In  2006  the  wearing  layer  of  the  road  was  characterized  by  rutting   and  both  longitudinal  and  transversal  cracking  (also  deep  crack,  >  20  cm)  and  the  conditions   were  no  more  suitable  for  allowing  the  safe  circulation  of  the  vehicles.  

An   operation   of   asphalt   recycling   was   thought   to   be   the   best   solution   for   the   mentioned   situation.  It  could  be  possible  to  solve  the  problems  of  the  road:  since  the  settlements  could   be   considered   finished   because   of   the   time   passed   after   the   road   opening,   it   was   only   necessary  to  put  a  new  regular  wearing  course  and  to  solve  the  problem  of  deep  cracking.  

(29)

This  intervention  was  considered  to  give  the  pavement  10  more  years  of  life  with  the  waste   of  a  rather  low  amount  of  money  and  the  production  of  a  limited  quantity  of  landfill  waste.  

2.3.  Description  of  the  intervention  

 

The  works  included  the  following  phases:  

-­‐ removal  of  the  first  3  cm  of  the  existing  pavement  by  cold  scarification.  Some  of  this   material  was  used  to  fill  the  shoulders.  

-­‐ cold   recycling  of  the  remaining  asphalt  pavement  and  of  part  of  the  granular  base   course  (average  depth  of  30  cm),  using  asphalt  emulsions.  In  order  to  optimize  this   operation,  the  whole  road  was  divided  in  three  parts  and  in  every  of  them  a  study   was  carried  out  to  discover  the  best  solution  in  term  of  asphalt  emulsions  or  foamed   bitumen.  

-­‐ construction  of  a  new  5  cm  layer  in  asphalt  mix,  made  with  asphalt  modified  with   elastomers.  

-­‐ construction   of   a   new   3   cm   wearing   layer   with   antiskid   properties,   using   asphalt   modified  with  elastomers.  

 

   

Figure  2.3:  Train  operations  using  of  foamed  bitumen  

 

Riferimenti

Documenti correlati

The shallow neural network that best fits the experimental data is characterized by 27 neurons in the hidden layer,

The damage curves, expressed in terms of the Plateau Value of the Ratio of Dissipated Energy Change, for both the stress and the strain control mode, were elaborated and

A further consideration is that architects’ houses and apartments, as privileged locations of the private sphere, are not necessarily capable of transformation into public spaces.

The results obtained showed that there were no substantial difference in Marshall Properties, moisture susceptibility, resilient modulus and rutting resistance between asphalt

Immunoreactivity for CYP3A4 was observed in the surrounding hepatocytes in 8 out of 11 cases, whereas immunostaining for CYP3A7 was found in the normal liver cells in 7

The reference spectra are determined from high statistics electron and proton data samples selected using tracker and ECAL information including charge- sign, track-shower

[r]

Particle size, bulk density, porosity, water holding capacity from Miscanthus and straw were measured experimentally in the lab of the Department of Agriculture, Food, Environment