• Non ci sono risultati.

(1)Problem 12154 (American Mathematical Monthly, Vol.127, January 2020) Proposed by M

N/A
N/A
Protected

Academic year: 2021

Condividi "(1)Problem 12154 (American Mathematical Monthly, Vol.127, January 2020) Proposed by M"

Copied!
1
0
0

Testo completo

(1)

Problem 12154

(American Mathematical Monthly, Vol.127, January 2020) Proposed by M. Lukarevski (North Macedonia).

Letra,rb, and rc be the exradii of a triangle with circumradiusR and inradius r. Prove ra

rb+ rc + rb

rc+ ra + rc

ra+ rb ≥2 − r R.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let s be the semiperimeter of the triangle and let A be its area. Then we have that r = A

s, ra = A

s − a, rb= A

s − b, rc= A

s − c, R = abc 4A and the inequality can be written as

(s − b)(s − c)

(s − a)(2s − b − c)+ (s − a)(s − c)

(s − b)(2s − a − c)+ (s − a)(s − b)

(s − c)(2s − a − b) ≥2 − 4A2 sabc. Let x = (b + c − a)/2 > 0, y = (c + a − b)/2 > 0, and z = (a + b − c)/2 > 0 then

a = x + y, b = y + z, c = z + x, s = x + y + z, A2= xyz(x + y + z) and the inequality becomes

xy

z(x + y)+ yz

x(y + z)+ zx

y(z + x) ≥2 − 4xyz

(x + y)(y + z)(z + x) or

x3y3+ z3x3+ y3z3+ 3x2y2z2≥xyz2(yz + zx) + xy2z(yz + xy) + x2yz(zx + xy), which holds by Schur’s inequality

X3+ Z3+ Y3+ 3XY Z ≥ XY (X + Y ) + XZ(X + Z) + Y Z(Y + Z)

where X = yz, Y = zx, Z = xy. 

Riferimenti