• Non ci sono risultati.

(1)Problem 11826 (American Mathematical Monthly, Vol.122, March 2015) Proposed by M

N/A
N/A
Protected

Academic year: 2021

Condividi "(1)Problem 11826 (American Mathematical Monthly, Vol.122, March 2015) Proposed by M"

Copied!
1
0
0

Testo completo

(1)

Problem 11826

(American Mathematical Monthly, Vol.122, March 2015)

Proposed by M. Bataille (France).

Let m and n be positive integers with m ≤ n. Prove that

n

X

k=m

4n+1−km + k − 1 m − 1

2

n

X

k=m

m + n k

2

.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

For 1 ≤ m ≤ n, let

Fm(n) =

n

X

k=m

1 4k

m + k − 1 m − 1

2

− 1 4n+1

n

X

k=m

m + n k

2 .

Then

Fm(m) = 1 4m

2m − 1 m − 1

2

− 1 4m+1

2m m

2

= 0.

So it suffices to show that Fm(n) ≥ Fm(n − 1) for n > m. Note that

n

X

k=m

m + n k

2 k m + n =

n

X

k=m

 m + n m + n − k

2m + n − k m + n =

n

X

k=m

m + n k

2

n

X

k=m

m + n k

2 k m + n

implies that

n

X

k=m

m + n k

2

2k m + n =

n

X

k=m

m + n k

2

.

Hence

Fm(n) − Fm(n − 1) = 1 4n

m + n − 1 m − 1

2

− 1 4n+1

n

X

k=m

m + n k

2 + 1

4n

n−1

X

k=m

m + n − 1 k

2

= 1 4n

n−1

X

k=m−1

m + n − 1 k

2

− 1 4n+1

n

X

k=m

m + n k

2

= 1 4n+1

n

X

k=m

m + n k

2 2k m + n

2

n

X

k=m

m + n k

2!

≥ 0,

because by Cauchy-Schwarz inequality

n

X

k=m

m + n k

2

·

n

X

k=m

m + n k

2 2k m + n

2

n

X

k=m

m + n k

2 2k m + n

!2

=

n

X

k=m

m + n k

2!2

.



Riferimenti