• Non ci sono risultati.

(1)Problem 12012 (American Mathematical Monthly, Vol.124, December 2017) Proposed by O

N/A
N/A
Protected

Academic year: 2021

Condividi "(1)Problem 12012 (American Mathematical Monthly, Vol.124, December 2017) Proposed by O"

Copied!
1
0
0

Testo completo

(1)

Problem 12012

(American Mathematical Monthly, Vol.124, December 2017) Proposed by O. Furdui and Alina Sintamarian (Romania).

Let k be a nonnegative integer. Find the set of real numbers x for which the power series

X

n=k

n k

 

e− 1 − 1 1!− 1

2!− · · · − 1 n!

 xn

converges, and determine the sum.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let

Fk(x) :=

X

n=k

n k



e−

n

X

j=0

1 j!

xn. Note that by Taylor’s theorem, for n ≥ k, there is t ∈ (0, 1) such that

n k



e−

n

X

j=0

1 j!

xn

≤n k

 et

(n + 1)!|x|n≤ e|x|k

k!(n + 1)· |x|n−k (n − k)!

and, by the Weierstrass M-Test, the power series Fk(x) converges for any real number x and it con- verges uniformly on any bounded subset in R (so we can interchange summation with differentiation).

Now, for k = 0,

F0(x) =

X

n=0

e−

n

X

j=0

1 j!

xn=

X

n=0

X

j=n+1

1 j!

xn

=

X

j=1

1 j!

j−1

X

n=0

xn

!

=

X

j=1

1 j!

1 − xj 1 − x =

 e− ex

1 − x if x 6= 1, e if x = 1.

By using the general Leibniz rule for the k-th derivative of a product, we get

D(k) e − ex 1 − x



= eD(k)((1 − x)1) −

k

X

j=0

k j



D(k−j)(ex) · D(j)((1 − x)1)

= k!e

(1 − x)k+1 − ex

k

X

j=0

k j

 j!

(1 − x)j+1. Hence

Fk(x) = xk k!

X

n=k

e−

n

X

j=0

1 j!

D(k)(xn) = xk

k! D(k)(F0(x))

=







 xk (1 − x)k+1

e− ex

k

X

j=0

(1 − x)j j!

 if x 6= 1, e

(k + 1)! if x = 1.

This is a more compact formula

Fk(x) = xkex

X

j=0

(1 − x)j (j + k + 1)!.



Riferimenti