• Non ci sono risultati.

(1)Problem 11874 (American Mathematical Monthly, Vol.122, December 2015) Proposed by C

N/A
N/A
Protected

Academic year: 2021

Condividi "(1)Problem 11874 (American Mathematical Monthly, Vol.122, December 2015) Proposed by C"

Copied!
1
0
0

Testo completo

(1)

Problem 11874

(American Mathematical Monthly, Vol.122, December 2015) Proposed by C. I. V˘alean (Romania).

Evaluate the limits below,

n→∞lim

n−1

X

k=2

ζ(k)

Γ(n − k), lim

n→∞

n−2

X

k=1

(−1)k−1ζ(n − k) Γ(k) .

Solution proposed by Moubinool Omarjee, Lyc´ee Henri IV, Paris, France, and Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, Italy.

We first note that

X

k=2

(ζ(k) − 1) =

X

k=2

X

n=2

1 nk =

X

n=2

X

k=2

1 nk =

X

n=2

1/n2 1 − 1/n =

X

n=2

1 n(n − 1) =

X

n=2

 1 n − 1−1

n



= 1.

Moreover for all z ∈ C,

X

k=0

zk−1 Γ(k) =

X

k=1

zk k! = ez. The Cauchy product of these two absolutely convergent series is

X

n=3 n−1

X

k=2

(ζ(k) − 1)zn−k+1 Γ(n − k)

!

= ez

where the convergence is given by Mertens’ theorem.

Since the general term of the series goes to zero, we have that

n→∞lim

n−1

X

k=2

(ζ(k) − 1)zn−k+1 Γ(n − k) = 0.

Therefore

n→∞lim

n−1

X

k=2

ζ(k)zn−k+1 Γ(n − k) = lim

n→∞

n−1

X

k=2

zn−k+1

Γ(n − k)+ lim

n→∞

n−1

X

k=2

(ζ(k) − 1)zn−k+1 Γ(n − k) = lim

n→∞

n−2

X

k=1

zk−1 Γ(k) = ez. Finally we apply this result for z = 1 and z = −1 to the given limits,

n→∞lim

n−1

X

k=2

ζ(k) Γ(n − k)

z=1= e and lim

n→∞

n−2

X

k=1

(−1)k−1ζ(n − k) Γ(k) = lim

n→∞

n−1

X

k=2

ζ(k)(−1)n−k−1 Γ(n − k)

z=−1= e−1.



Riferimenti