• Non ci sono risultati.

(1)Problem 12215 (American Mathematical Monthly, Vol.127, November 2020) Proposed by O

N/A
N/A
Protected

Academic year: 2021

Condividi "(1)Problem 12215 (American Mathematical Monthly, Vol.127, November 2020) Proposed by O"

Copied!
1
0
0

Testo completo

(1)

Problem 12215

(American Mathematical Monthly, Vol.127, November 2020) Proposed by O. Furdui and A. Sintamarian (Romania).

Calculate

X

n=1

 1

n2 + 1

(n + 2)2 + 1

(n + 4)2 + · · ·



− 1 2n

 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. We have that S =

X

n=1

X

k=0

1

(n + 2k)2 − 1 2n

!

=

X

n=1

X

k=0

1

(2n + 2k)2− 1 4n

! +

X

n=1

X

k=0

1

(2n − 1 + 2k)2 − 1 4n − 2

!

=1 4

X

n=1

X

k=n

1 k2 −1

n

! +

X

n=1

X

k=n

1

(2k − 1)2− 1 4n − 2

!

= 1 4+ 1

4 +π2 16



= 1 2+π2

16 because, as N → ∞,

N

X

n=1

X

k=n

1 k2 −1

n

!

=

N

X

n=1

π2 6 −

n−1

X

k=1

1 k2

!

− 1 n

!

= N π2 6 −

N

X

n=1 n−1

X

k=1

1 k2

N

X

n=1

1 n

= N π2 6 −

N −1

X

k=1

1 k2

N

X

n=k+1

1 −

N

X

n=1

1 n

= N π2 6 −

N −1

X

k=1

N − k k2

N

X

n=1

1 n

= N π2 6 −

N −1

X

k=1

1 k2

!

− 1 N →1, and

N

X

n=1

X

k=n

1

(2k − 1)2 − 1 4n − 2

!

=

N

X

n=1

π2 8 −

n−1

X

k=1

1 (2k − 1)2

!

− 1 4n − 2

!

= Nπ2 8 −

N

X

n=1 n−1

X

k=1

1

(2k − 1)2 −1 2

N

X

n=1

1 2n − 1

= Nπ2 8 −

N −1

X

k=1

1 (2k − 1)2

N

X

n=k+1

1 − 1 2

N

X

n=1

1 2n − 1

= Nπ2 8 −

N −1

X

k=1

N − k (2k − 1)2−1

2

N

X

n=1

1 2n − 1

= N π2 8 −

N −1

X

k=1

1 (2k − 1)2

! +1

2

N −1

X

k=1

1

(2k − 1)2 − 1/2 2N − 1→ 1

4 +π2 16. Note that by Stolz-Cesaro Theorem,

N →∞lim N π2 6 −

N −1

X

k=1

1 k2

!

= lim

N →∞

1

N2

1 N+11

N

= 1,

N →∞lim N π2 8 −

N −1

X

k=1

1 (2k − 1)2

!

= lim

N →∞

1

(2N −1)2 1 N+11

N

= 1 4.



Riferimenti