• Non ci sono risultati.

(1)Problem 12102 (American Mathematical Monthly, Vol.126, March 2019) Proposed by O

N/A
N/A
Protected

Academic year: 2021

Condividi "(1)Problem 12102 (American Mathematical Monthly, Vol.126, March 2019) Proposed by O"

Copied!
1
0
0

Testo completo

(1)

Problem 12102

(American Mathematical Monthly, Vol.126, March 2019) Proposed by O. Furdui and A. Sintamarian (Romania).

Prove

X

n=1

Hn2 ζ(2) −

n

X

k=1

1 k2 − 1

n

!

= 2 − ζ(2) − 2ζ(3)

whereHn =Pn j=1

1

j is then-th harmonic number.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. For N ≥ 1

SN :=

N

X

n=1

Hn2 ζ(2) −

n

X

k=1

1 k2 −1

n

!

=

N

X

n=1

Hn2

X

k=n+1

1 k2

N

X

n=1

Hn2

n

=

N

X

k=1

1 k2

k−1

X

n=1

Hn2

N

X

n=1

Hn2

n + ζ(2) −

N

X

k=1

1 k2

!

·

N

X

n=1

Hn2.

It is easy to verify by induction thatPm−1

n=1 Hn2= mHm2 −(2m + 1)Hm+ 2m, therefore

N

X

k=1

1 k2

k−1

X

n=1

Hn2

N

X

n=1

Hn2 n =

N

X

k=1

1

k2 kHk2−(2k + 1)Hk+ 2k

N

X

n=1

Hn2 n

= −2

N

X

k=1

Hk

k −

N

X

k=1

Hk

k2 + 2HN

= −HN2

N

X

k=1

1 k2

N

X

k=1

Hk

k2 + 2HN

= −HN2 + 2HN −ζ(2) − 2ζ(3) + o(1) where at the last step we used the known resultsP

n=1 1

k2 = ζ(2) andP

k=1 Hk

k2 = 2ζ(3).

On the other hand, since HN = ln(N ) + γ + o(1), andPN k=1

1

k2 = ζ(2) −N1 + O(1/N2), we have that ζ(2) −

N

X

k=1

1 k2

!

·

N

X

n=1

Hn2= 1

N + O(1/N2)



· (N + 1)HN2 −(2N + 1)HN + 2N

= HN2 −2HN + 2 + o(1).

Finally, as N → ∞,

SN = −HN2 + 2HN −ζ(2) − 2ζ(3) + HN2 −2HN + 2 + o(1) → 2 − ζ(2) − 2ζ(3).



Riferimenti