Problem 11725
(American Mathematical Monthly, Vol.120, August-September 2013]) Proposed by Mher Safaryan (Armenia).
Let m be a positive integer. Show that, as n → ∞,
ln(2) −
n
X
k=1
(−1)k−1 k
= C1
n +C2
n2 + · · · +Cm
nm + o
1 nm
,
where
Ck = (−1)k
k
X
i=1
1 2i
i
X
j=1
(−1)j i − 1 j − 1
jk−1
for 1 ≤ k ≤ m.
Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.
By Euler-Maclaurin summation formula,
n
X
k=1
1
k = ln(n) + γ + 1 2n−
m
X
k=2
Bk k · 1
nk + o
1 nm
,
and it follows that
ln(2) −
n
X
k=1
(−1)k−1 k
=
ln(2) −
n
X
k=1
1 k+
n/2
X
k=1
1 k
=
ln(2) − ln(n) − γ − 1 2n+
m
X
k=2
Bk
k · 1 nk
+ ln(n/2) + γ + 1 n−
m
X
k=2
Bk k · 2k
nk + o
1 nm
= 1 2n−
m
X
k=2
(2k− 1)Bk
k · 1
nk + o
1 nm
.
Now C1= 1/2 and it suffices to show that Ck= −(2k− 1)Bk/k for k ≥ 2.
The (k − 1)-th Euler polynomial is given by
Ek−1(x) =
k
X
i=1
1 2i−1
i
X
j=1
(−1)j−1 i − 1 j − 1
(x + j − 1)k−1,
and it verifies the following known identities
Ek−1(x + 1) + Ek−1(x) = 2xn−1 and Ek−1(x) = 2
k Bk(x) − 2kBk(x/2) where Bk(x) is the k-th Bernoulli polynomial. Finally
Ck =(−1)k−1Ek−1(1)
2 = (−1)kEk−1(0)
2 =(−1)k Bk(0) − 2kBk(0)
k = −(2k− 1)Bk
k ,
where the last equality holds because Bk(0) = Bk and Bk = 0 if k ≥ 2 and k is odd.