• Non ci sono risultati.

(1)Problem 12127 (American Mathematical Monthly, Vol.126, August-September 2019) Proposed by O

N/A
N/A
Protected

Academic year: 2021

Condividi "(1)Problem 12127 (American Mathematical Monthly, Vol.126, August-September 2019) Proposed by O"

Copied!
1
0
0

Testo completo

(1)

Problem 12127

(American Mathematical Monthly, Vol.126, August-September 2019) Proposed by O. Furdui and A. Sintamarian (Romania).

Calculate

Z 1 0

 Li2(1) − Li2(x) 1 − x

2

dx.

whereLi2(z) =P

k=1zk/k2 is the dilogarithm function.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Since Li2(1) − Li2(x) = Li2(1 − x) + ln(x) ln(1 − x), the given integral I can be written as I =

Z 1 0

 Li2(1 − x) + ln(x) ln(1 − x) 1 − x

2

dx = Z 1

0

 Li2(x) + ln(x) ln(1 − x) x

2

dx

= Z 1

0

Li22(x) x2 dx + 2

Z 1 0

Li2(x) ln(x) ln(1 − x)

x2 dx +

Z 1 0

ln2(x) ln2(1 − x)

x2 dx.

The first integral:

Z 1 0

Li22(x) x2 dx =

X

n=1

1 n2

Z 1 0

xn−2Li2(x) dx =

X

n=1

1 n2

X

n=1

1 k2

Z 1 0

xn+k−2dx

=

X

n=1

X

k=1

1 n2k2(n + k − 1)

= ζ(3) + ζ(2)

X

n=2

1 n2(n − 1) −

X

n=2

Hn−1

n2(n − 1)2. The second integral:

Z 1 0

Li2(x) ln(x) ln(1 − x)

x2 dx =

X

n=1

1 n2

Z 1 0

xn−2ln(x) ln(1 − x) dx = −

X

n=1

1 n2

X

k=1

1 k

Z 1 0

xn+k−2ln(x)) dx

=

X

n=1

X

k=1

1 n2k(n + k − 1)2

= ζ(3) − ζ(2)

X

n=2

1 n2(n − 1) +

X

n=2

Hn−(2)1

n2(n − 1)+

X

n=2

Hn−1

n2(n − 1)2. The third integral:

Z 1 0

ln2(x) ln2(1 − x) x2 dx = 2

X

n=1

Hn

n + 1 Z 1

0

xn−1ln2(x) dx = 4

X

n=1

Hn

(n + 1)n3. Hence, by partial fraction decomposition,

I = 3ζ(3) − ζ(2)

X

n=2

1

n2(n − 1)+ 2

X

n=2

Hn−(2)1

n2(n − 1)+

X

n=2

Hn−1

n2(n − 1)2 + 4

X

n=1

Hn (n + 1)n3

= 3ζ(3) − ζ(2)(2 − ζ(2)) + (2ζ(3) − 3ζ(4)/2) + (−2ζ(2) + 3ζ(3)) + (4ζ(2) − 8ζ(3) + 5ζ(4))

= ζ(2)2+7ζ(4) 2 = π4

15

where we used the known multiple zeta values

X

n=2

Hn−1

n2 = ζ(2, 1) = ζ(3),

X

n=2

Hn−1

n3 = ζ(3, 1) = ζ(4) 4 ,

X

n=2

Hn−(2)1

n2 = ζ(2, 2) = 3ζ(4) 4 .



Riferimenti