• Non ci sono risultati.

Find ∞ X n=1  arctan 1 F4n−3 + arctan 1 F4n−2 + arctan 1 F4n−1 − arctan 1 F4n

N/A
N/A
Protected

Academic year: 2021

Condividi "Find ∞ X n=1  arctan 1 F4n−3 + arctan 1 F4n−2 + arctan 1 F4n−1 − arctan 1 F4n"

Copied!
1
0
0

Testo completo

(1)

Problem 11910

(American Mathematical Monthly, Vol.123, May 2016) Proposed by C. I. Vˇalean (Romania).

LetFk be the k-th Fibonacci number. Find

X

n=1



arctan 1 F4n−3

+ arctan 1 F4n−2

+ arctan 1

F4n−1 − arctan 1 F4n

 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let ϕ = (√

5 + 1)/2, then for n > 0,

arctan(ϕ(2n+1)) + arctan(ϕ(2n−1)) = arctan ϕ(2n+1)+ ϕ(2n−1) 1 − ϕ4n



= arctan

 ϕ1+ ϕ ϕ2n− ϕ2n



= arctan

√5 ϕ2n− ϕ2n

!

= arctan 1 F2n. Moreover, for n > 1,

arctan 1

F2n + arctan 1

F2n−1 = arctan F2n−1+ F2n−1−1 1 − F2n1F2n−11

!

= arctan F2n+ F2n−1

F2nF2n−1− 1



= arctan

 F2n+1

F2nF2n−1− 1



= arctan 1 F2n−2

. Hence

N

X

n=1



arctan 1

F4n−2 − arctan 1 F4n



=

2N

X

n=1

(−1)n+1arctan 1 F2n

=

2N

X

n=1

(−1)n+1

arctan(ϕ(2n+1)) + arctan(ϕ(2n−1))

=

2N +1

X

n=2

(−1)narctan(ϕ(2n−1)) +

2N

X

n=1

(−1)n+1arctan(ϕ(2n−1))

= arctan(ϕ1) − arctan(ϕ(4N +1))

= π

2 − arctan(ϕ) − arctan(ϕ

(4N +1)) and

N

X

n=1



arctan 1 F4n−3

+ arctan 1 F4n−1



=

2N

X

n=1

arctan 1 F2n−1

= arctan 1 F1

+

2N

X

n=2



arctan 1

F2n−2 − arctan 1 F2n



= arctan 1 F1

+ arctan 1

F2 − arctan 1 F4N

= π

2 − arctan 1 F4N

. Finally, it follows that

X

n=1



arctan 1 F4n−3

+ arctan 1 F4n−2

+ arctan 1

F4n−1 − arctan 1 F4n



= π − arctan(ϕ).



Riferimenti