• Non ci sono risultati.

Prove Z 1 0 arctan(x) x ln  1 + x2 (1 − x)2  dx = π3 16

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove Z 1 0 arctan(x) x ln  1 + x2 (1 − x)2  dx = π3 16"

Copied!
1
0
0

Testo completo

(1)

Problem 12054

(American Mathematical Monthly, Vol.125, June-July 2018) Proposed by C. I. V˘alean (Romania).

Prove

Z 1 0

arctan(x)

x ln

 1 + x2 (1 − x)2



dx = π3 16.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let Hk=Pk j=1

1

j for k ≥ 1. We have that for x ∈ (0, 1), arctan(x) ln(1 + x2) = i

2(ln(1 − ix) − ln(1 + ix))(ln(1 − ix) + ln(1 + ix))

= i

2(ln2(1 − ix) − ln2(1 + ix)) = − Im ln2(1 − ix) = −2 Im

X

k=1

Hk(ix)k+1 k + 1

!

where we used the fact that

−ln(1 − t) =

X

k=1

tk

k =⇒ −ln(1 − t) 1 − t =

X

k=1

Hktk =⇒ ln2(1 − t) = 2

X

k=1

Hktk+1 k + 1 . Hence

Z 1

0

arctan(x) ln(1 + x2)

x dx = −2 Im

Z 1

0

X

k=1

Hkik+1xk k + 1 dx

!

= −2 Im

X

k=1

Hkik+1 k + 1

Z 1 0

xkdx

!

= −2 Re

X

k=1

Hkik (k + 1)2

! . On the other hand,

Z 1 0

arctan(x) ln(1 − x)

x dx =

Z 1 0

X

k=1

(−1)kx2kln(1 − x) 2k + 1 dx

=

X

k=0

(−1)k 2k + 1

Z 1

0

x2kln(1 − x) dx

=

X

k=0

(−1)k (2k + 1)2

Z 1

0

ln(1 − x) d(x2k+1−1)

= −

X

k=0

(−1)k (2k + 1)2

Z 1

0

x2k+1−1 x − 1 dx

= −

X

k=1

(−1)kH2k+1

(2k + 1)2 = − Re

X

k=0

Hk+1ik (k + 1)2

! . Therefore

Z 1

0

arctan(x)

x ln

 1 + x2 (1 − x)2



dx = −2 Re

X

k=1

Hkik (k + 1)2

! + 2 Re

X

k=0

Hk+1ik (k + 1)2

!

= 2 Re

X

k=0

ik (k + 1)3

!

= 2 Im

X

k=1

ik k3

!

= 2 Im(Li3(i)) = π3 16 because, by a known identity for the trilogarithm Li3,

2 Im(Li3(i)) = Im (Li3(z) − Li3(1/z))z=i= −1

6Im ln3(−z) + π2ln(−z)

z=i= π3 16.



Riferimenti