Problem 12054
(American Mathematical Monthly, Vol.125, June-July 2018) Proposed by C. I. V˘alean (Romania).
Prove
Z 1 0
arctan(x)
x ln
1 + x2 (1 − x)2
dx = π3 16.
Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.
Solution. Let Hk=Pk j=1
1
j for k ≥ 1. We have that for x ∈ (0, 1), arctan(x) ln(1 + x2) = i
2(ln(1 − ix) − ln(1 + ix))(ln(1 − ix) + ln(1 + ix))
= i
2(ln2(1 − ix) − ln2(1 + ix)) = − Im ln2(1 − ix) = −2 Im
∞
X
k=1
Hk(ix)k+1 k + 1
!
where we used the fact that
−ln(1 − t) =
∞
X
k=1
tk
k =⇒ −ln(1 − t) 1 − t =
∞
X
k=1
Hktk =⇒ ln2(1 − t) = 2
∞
X
k=1
Hktk+1 k + 1 . Hence
Z 1
0
arctan(x) ln(1 + x2)
x dx = −2 Im
Z 1
0
∞
X
k=1
Hkik+1xk k + 1 dx
!
= −2 Im
∞
X
k=1
Hkik+1 k + 1
Z 1 0
xkdx
!
= −2 Re
∞
X
k=1
Hkik (k + 1)2
! . On the other hand,
Z 1 0
arctan(x) ln(1 − x)
x dx =
Z 1 0
∞
X
k=1
(−1)kx2kln(1 − x) 2k + 1 dx
=
∞
X
k=0
(−1)k 2k + 1
Z 1
0
x2kln(1 − x) dx
=
∞
X
k=0
(−1)k (2k + 1)2
Z 1
0
ln(1 − x) d(x2k+1−1)
= −
∞
X
k=0
(−1)k (2k + 1)2
Z 1
0
x2k+1−1 x − 1 dx
= −
∞
X
k=1
(−1)kH2k+1
(2k + 1)2 = − Re
∞
X
k=0
Hk+1ik (k + 1)2
! . Therefore
Z 1
0
arctan(x)
x ln
1 + x2 (1 − x)2
dx = −2 Re
∞
X
k=1
Hkik (k + 1)2
! + 2 Re
∞
X
k=0
Hk+1ik (k + 1)2
!
= 2 Re
∞
X
k=0
ik (k + 1)3
!
= 2 Im
∞
X
k=1
ik k3
!
= 2 Im(Li3(i)) = π3 16 because, by a known identity for the trilogarithm Li3,
2 Im(Li3(i)) = Im (Li3(z) − Li3(1/z))z=i= −1
6Im ln3(−z) + π2ln(−z)
z=i= π3 16.