• Non ci sono risultati.

A convolutional neural network approach to detect congestive heart failure

N/A
N/A
Protected

Academic year: 2021

Condividi "A convolutional neural network approach to detect congestive heart failure"

Copied!
9
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Biomedical

Signal

Processing

and

Control

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b s p c

A

convolutional

neural

network

approach

to

detect

congestive

heart

failure

Mihaela

Porumb

a

,

Ernesto

Iadanza

b

,

Sebastiano

Massaro

c,d

,

Leandro

Pecchia

a,∗

aUniversityofWarwick,SchoolofEngineering,CoventryCV47AL,UK bUniversityofFlorence,v.S.Marta,3,Florence,Italy

cTheOrganizationalNeuroscienceLaboratory,LondonWC1N3AX,UK dUniversityofSurrey,GuildfordGU27XH,UK

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received28March2019

Receivedinrevisedform23May2019 Accepted7June2019

Keywords:

Convolutionalneuralnetworks Congestiveheartfailure Machinelearning

a

b

s

t

r

a

c

t

CongestiveHeartFailure(CHF)isaseverepathophysiologicalconditionassociatedwithhigh preva-lence,highmortalityrates,andsustainedhealthcarecosts,thereforedemandingefficientmethodsfor itsdetection.Despiterecentresearchhasprovidedmethodsfocusedonadvancedsignalprocessingand machinelearning,thepotentialofapplyingConvolutionalNeuralNetwork(CNN)approachestothe automaticdetectionofCHFhasbeenlargelyoverlookedthusfar.Thisstudyaddressesthisimportant gapbypresentingaCNNmodelthataccuratelyidentifiesCHFonthebasisofonerawelectrocardiogram (ECG)heartbeatonly,alsojuxtaposingexistingmethodstypicallygroundedonHeartRateVariability. WetrainedandtestedthemodelonpubliclyavailableECGdatasets,comprisingatotalof490,505 heart-beats,toachieve100%CHFdetectionaccuracy.Importantly,themodelalsoidentifiesthoseheartbeat sequencesandECG’smorphologicalcharacteristicswhichareclass-discriminativeandthusprominent forCHFdetection.Overall,ourcontributionsubstantiallyadvancesthecurrentmethodologyfor detect-ingCHFandcaterstoclinicalpractitioners’needsbyprovidinganaccurateandfullytransparenttoolto supportdecisionsconcerningCHFdetection.

©2019ElsevierLtd.Allrightsreserved.

1. Introduction

CongestiveHeartFailure(CHF)isapathophysiologicalcondition responsibleforthefailureoftheheartinpumpingbloodinthebody [1]whichhasencounteredwidespreadresearchandsocietal atten-tion[2].AccordingtotheEuropeanSocietyofCardiology,around 26millionpeopleworldwideareaffectedbyaformofheart fail-ure[3].CHFisastronglydegenerativecondition,anditsprevalence increasesquicklywithage[4,5].Themortalityrateisclosely associ-atedwiththedegreeofseverity,reachingpeaksof40%inthemost seriousevents[e.g.,NewYorkHeartAssociation(NYHA)classes III-IV][6].CHFisalsooneoftheforemostreasonsforhospitalizationin theelderly,anditischaracterizedbyaresilientrelapserate,with halfoftheoutpatientsreadmittedwithinafewmonthsfrom hos-pitaldischarge[7].Moreover,justamongthemostindustrialized countries,thehealthcareexpenditureforCHFconsumes2–3%of

∗ Correspondingauthor.

E-mailaddresses:Ernesto.Iadanza@unifi.it(E.Iadanza),

sebastiano.massaro@theonelab.org(S.Massaro),L.Pecchia@warwick.ac.uk (L.Pecchia).

thehealthcarebudgets,withthecostofhospitalizationbeingthe greatestproportionofthespending[8–10].Thus,withaworldwide agingpopulationandsustainedpressuresonhealthcaresystems andresources,thereisthecompellingdemand—amongpatients, healthcareproviders,policymakers,andthesocietyasawhole—to addressthis scenariobyidentifyinghighlyaccuratemethods to improvedetectionofheartfailures[11]andinturnenableearly andmoreefficientdiagnoses.

Recently,researchhasmadesignificantprogressintheseareas. Inparticular,giventhequantityandcomplexityofdatainvolved, machinelearning techniquesand classsifiers(e.g.,SVM, MLP, k-NN,CART,RandomForest)[12–18]havebeensuccessfullyapplied toanalyze,detect,andclassifyheartfailures,aswediscussedand showedinpreviousworks[12,13,19–21].Theseapproachesableto distinguishbetweenheartfailureandhealthysubjectsaremostly basedonHeartRateVariability(HRV)—thevariationovertimeof theperiodbetweenconsecutiveheartbeatsextractedfrom elec-trocardiographic(ECG)signals[22]—,showingthatdepressedHRV patternsrepresentaccuratemarkersfordetectingthecondition. However,buildingaccurateHRV-basedmodelsistime-consuming andpronetoerrorsteps,duetothepreprocessingandtheiterative processofmanuallyselectingappropriatefeatures.Moreover,the https://doi.org/10.1016/j.bspc.2019.101597

(2)

2 M.Porumb,E.Iadanza,S.Massaroetal./BiomedicalSignalProcessingandControl55(2020)101597 bestperformingHRV-basedmodelsgenerallyrequireeither

long-termsignals(i.e.,24h)oratleastthecombinationofshort-term HRVwithnon-standardlong-termHRVfeatures,asshownin[23]. Totackletheseissues,wepresenta novelframeworkofCHF detectionthatdoesnotrelyonHRVfeatures,ratheritusesraw ECGsignals only.Thismethodis basedona 1-D Convolutional NeuralNetwork(CNN).CNNsarehierarchicalneuralnetworksthat mimicthehumanvisualsystemandhaveproventobeeffective inrecognizingpatternsandstructuresofinputdatainimage clas-sification,localization,anddetectiontasks,amongothers[24–26]. Moreover,theyhavebeenextensivelyusedfortimeseriesanalysis inclassificationtasks.Somesuccessfulexamplesinclude,among others:generaltime seriesclassification [27–29], speech recog-nitiontasks[30],arrhythmiadetection[31,32],andmultivariate diagnosticmeasurementsmodeling[33,34].

Inspiredbythis growingbody ofresearch,we aimtodetect CHFthrougha1-DCNNapproachontheECGsignals.Addingto thesignificantbenefit of buildingupon raw physiological data, thismethodenablesvisualizationoftheinputtimeseries subse-quencesthatareclassdiscriminative(i.e.,CHFvs.healthysubjects). ThisfeatureconsiderablyimprovestheinterpretabilityoftheCNN modelandrepresentsacrucialaspecttoensurethe‘transparency’ ofthemethod[35,36].Suchatransparencyisfundamentaltohelp researchersexplainhowconclusionsarereached,andtoaid profes-sionalsinbetterunderstandingcorrelationsofpathophysiological behaviorsandpropertiesrevealedbythemodel.

Asweshallexplain,weusedaformofclassactivationmapping (Grad-CAM)[37]thathighlightstheclassdiscriminativeregionsin theinputdata.Inotherwords,Grad-CAMusesthemodel’slast acti-vationmapstooriginateaheatmapthatcanbeoverlappedwith theinput,thusshowingwhatregionsintheinputdatacontribute mosttoCHFdetection.Overall,theproposedframeworkputs for-wardseveraldevelopmentsforCHFdetection,suchasrefraining fromusingheftypreprocessingandfeaturesselectionstepsof HRV-basedmodels,aswellasenablingvisualizationofthesubsequences intheinputtimeserieswhichareusedtoreachcertain clinically-relevantconclusions.

2. Methods

2.1. Data

Weperformedaretrospectiveanalysisontwopublicly avail-abledatasets.Thedataforthenormalsubjects(i.e.,controlgroup) wereretrievedfromtheMIT-BIHNormalSinusRhythmDatabase [38] includedin PhysioNet [39]. Thisdatasetincludes 18 long-termECG recordingsofnormal healthynot-arrhythmicsubjects (Females=13;agerange:20to50).ThedatafortheCHFgroup wereretrievedfromtheBIDMCCongestiveHeartFailureDatabase [40] from PhysioNet [39]. Thisdataset includes long-term ECG recordingsof15subjectswithsevereCHF(i.e.,NYHAclasses III-IV)(Females=4;agerange:22to63).Altogether,thepoolofdata availableforthisstudyconsistsofabout20hofECGrecordingsper eachsubject;itcontainstwo-channelECGsignalssampledat250 samplespersecondfortheBIDMCdataset,and128samplesper secondfortheMIT-BIHdataset.

Thetwodatasetsusedinthisstudywerepublishedbythesame laboratory,theBeth IsraelDeaconess MedicalCenter,and were digitizedusingthesameproceduresaccordingtothesignal specifi-cationlineintheheaderfile.Thesedatasetshavebeenwidelyused inseveralstudiesconcerningCHFdetection,asexplainedin[11]. Indeed,itisanacknowledgedpracticetobuildandvalidateCHF classificationmodelsonthesesourcestoensureopportunitiesfor reproducibility.

Table1

Totalnumberofextractedbeatsfrombothdatasets:MIT-BIHandBIDMC.

Controlgroupbeats CHFgroupbeats

275,974 214,531

2.2. ECGpreprocessing

The ECG recordings from the BIDMC dataset were

down-sampledin order tomatch thesampling frequency of theECG

signalsfromtheMIT-BIHdataset(i.e.,128Hz).Recordsfromboth

databaseswerealreadymadeavailablewithcomputedbeat

anno-tations,whichweusedtoisolateandextractindividualheartbeats.

Weconsideredawindowof235msbeforetheannotatedRpeak

(equivalentto30samples=128samples/s*0.235s),andawindow

of390msaftertheRpeak (equivalentto50samples). Onlythe

beatsthatwereannotatedasnormal(N)wereretainedforfurther

analysis.

Eachheartbeatwasz-normalizedtoobtainanapproximately

zeromeanvalue(i.e.,amplitude)andastandarddeviationclose

to1.Becausethenumberofheartbeatsextractedforeachsubject

wasverylarge(∼70,000beats),andbecausetemporallyclosebeats

holdsimilarpatterns,werandomlyselectedonesinglebeatevery

5softheECGsignal.Thetotalnumberofbeatsusedinthisworkis

showninTable1.

2.3. Beatsclassification

Eachheartbeatwaslabeledwithabinaryvalueof1or0 (here-after“class”nottobeconfusedwiththeNYHAclasses)according tothestatusofthesubject:healthyorsufferingfromCHF, respec-tively.Ascustomaryinmachinelearning,thedatasetwasrandomly splitintothreesmallersubsetsfortraining,validation,andtesting (correspondingto50%,25%,and25%ofthetotaldata,respectively). Becauseoneperson’sheartbeatsarehighlyintercorrelated,these wereincludedonlyinoneofthesubsets(i.e.,training,testing,or validationset)atatime.Inordertoreducethevarianceofthe classi-ficationresultswerepeatedtherandomsplittingprocess10times. Inthisway,theCNNwastrainedandevaluatedover10runs;the reportedresultsrepresenttheaverageperformanceontheseruns, unlessotherwisestated.Performing10differentrandomsplitsof thedataset,andthenaveragingtheresultsofthemodels,isa simi-larproceduretothatofcross-validation(i.e.,averagingthevariance andbiasoftheestimator).Thesoledifferencebetweenthetwo methodsisthattheadditionalvalidationdatasetisusedforearly stoppingofthetrainingprocessandtuningthehyperparameters oftheCNN.

Two different performance evaluation strategies were employed: a) individual beat classification, and b) classifica-tionon5minofECGexcerptsthroughwhatwecalleda“majority votingscheme.”Specifically,bydenotingthenumberofindividual heartbeatsclassifiedasnormalwithN1,andthenumberof

heart-beatsthatwereclassifiedasCHFwithN0 within5-minutesECG

excerpts,thefinal classassociated witha given5-minutes ECG excerptwascalculatedasmax (N0,N1) .

2.4. Performancemeasures

Wecomputedthefollowingmeasuresforbinaryclassification toassesstheperformanceoftheCNNclassifier:Accuracy(Acc), Pre-cision(P),Sensitivity(Sens),Specificity(Spec)andAreaunderthe Curve(AUC)[23].Theseperformanceindicatorscorrespondtothe goldenstandardintheliterature[17,41],therebyenablingongoing models’comparison.

(3)

Fig.1.The1-DCNNarchitectureforbeatclassificationandvisualizationoftheclassdiscriminativesequencesintheinputheartbeats.

2.5. 1-DCNNclassifier

ThecompletearchitectureofourmodelisshowninFig.1. A1-DCNNclassifierwasusedforfeatureextraction,andthe MLPmodulefortheclassificationoftherawECGheartbeats.For thebeatclassificationproblem,theCNNactsasafeatureextractor block.Thefinalactivationsobtainedfromthelastlayerof convolu-tionareusedasinputsinaMultilayerPerceptron(MLP)network. Thefinaloutputisobtainedfromasoftmaxlayer[42].Thebasic convolutionallayerisfollowedbyabatchnormalizationlayer[43] andaReLUactivationfunction[44].Theconvolutionoperationis performedineachlayerby201-Dfilters(i.e.,kernels)withsizes {10,15,and20}usingastrideof1,hyperparameters,asinprevious studies[28,32].Thus,theconvolutionalblockcanbeformalizedas asetofthree operations—convolution,batchnormalization,and non-linearactivation—definedbytheequationsbelow:

y=Wx+b (1)

bn=BN (y) (2)

act=ReLU(bn) (3)

whereistheconvolutionoperator,Waretheconvolutionallayer parameters(i.e.,thelearnablefilters),xrepresentstheinputtime series,bthebias,BNthebatchnormalizationfunction,andReLU theactivationfunction.TheresultingCNNisbuiltbystackingthree convolutionalblocks,eachcomprising20filtersofsizes{10,15, and20}.

ThefinalactivationsareflattenedandpassedtoanMLPwith ahiddenlayerof30neuronsthatarethenfullyconnectedtothe outputneurons.Thefinallabelisobtainedfromthesoftmax func-tion.Poolingoperationisexcludedfromtheconvolutionalblocks accordingtorecentresearchshowingthatitdoesnotaffectthe classifierperformanceandmightaffectoverfitting(see,e.g.,ResNet [45]).

2.6. Visualizationofclassspecificsequences

We employed a Grad-CAM technique to visualize the sub-sequences in theinput ECG beats discern a certain class [37]. Grad-CAMrepresentsageneralizationofCAM[46]applicableto abroadrangeofCNNs,includingthosecontainingfully-connected

layers.InGrad-CAMtheweightsusedinthelinearcombinationof theforwardactivationmapsarecomputedastheglobalaverage poolingofthegradientsofthescoreforclasscwithrespecttothe lastfeaturemaps.Specifically,themethodimpliesthecomputation ofthegradientofthescoreforclassc(yc)withrespecttofeature

mapsA(i.e.,inourcasethefeaturemapsofthelastconvlayer)that areglobal-average-pooledtoobtaintheweights˛c

k.Therefore,the

weights˛c

karecomputedasfollows:

˛ck= m1



i



j

yc

Ak ij (3) where˛c

kcapturetheimportanceoffeaturemapkforatargetclass

c.TheGrad-CAMheatmapforaclassc,isobtainedasaweighted combinationoffeaturemaps,followedbyReLU[37].

GradCAMmapc=ReLU



k˛ c kA

k



(4)

AsshowninFig.1,weusedthistooltoderivetheclassactivation mapforclassc,whichindicatestheimportanceoftheactivationat atemporallocationxi;thisleadstotheclassificationoftheinput

timeseriesasaclassc. 2.7. Experimentalsettings

WeusedAdamOptimizer[47]astheoptimizationfunctionwith aninitiallearningrateof10−3.Thebatchsizewassetto200.The maximumnumberoftrainingstepswassetto3000which repre-sentsapproximately2.5epochswhenconsideringthebatchsize aboveandtheapproximatetrainingdatasetsizeof250,000beats. We usedthevalidationsettomonitorthetraining processand accountfortheoccurrenceofoverfitting.Insuchacase,anearly stoppingcriterionwasimplemented:Thiscriteriondoesstopthe trainingwhentheAUConthevalidationdatasetdoesnotimprove over ak=30optimizationsteps.Weusedthecategorical cross-entropyaslossfunction.Theweightswereinitialized usingthe Xavierinitializer[48];thebiaseswereinitializedtozero.The net-workwasimplemented inPythonusingTensorFlow framework [49].

Due to the high number of hyper-parameters in the CNN, weassessedacombinationofarchitectureandhyper-parameters

(4)

4 M.Porumb,E.Iadanza,S.Massaroetal./BiomedicalSignalProcessingandControl55(2020)101597

Table2

IndividualHeartbeatsClassification.

Training Validation Test

Accuracy 0.999±1.1*10−16 0.982±2.0*10−3 0.978±2.0*10−3 AUC 0.999±1.1*10−16 0.990±1.1*10−16 0.980±1.1*10−16 Sensitivity 0.999±1.1*10−16 0.973±2.0*10−3 0.963±4.0*10−3 Specificity 0.999±1.1*10−16 0.978±2.0*10−3 0.986±7.0*10−4 Precision 0.999±1.1*10−16 0.970±3.0*10−3 0.985±7.0*10−4 Table3

MeanConfusionMatrix.

TrueCHF Truenormal TotalACC

ClassifiedCHF 67181 694

Classifiednormal 2071 61512

Classifiedcorrectlyfromeachclass ∼97% ∼98.8% ∼97.9%

Error ∼3% ∼1.1% ∼2.1%

throughaniterativeprocess,usinggrid-searchandmanualtuning.

Asconcernsthearchitecturestructure,wesearchedoverthe

num-berofconvolutionallayers(3–9),differentfiltersizes(from5to

20),andthenumberoffiltersineachconvolutionallayer(5to

max-imum30).Thelearningratewasinsteadmanuallytunedtoachieve

fasterconvergence;theconsideredvalueswere{10−1to10−5}.The

resultswepresentbelowwereobtainedwiththeCNNarchitecture

thatachievedthehighestperformanceonthevalidationdataset

withtheminimumnumberofparameters.

3. Results

3.1. Individualbeatsclassification

Table2reportstheperformanceforindividualbeatclassification astheaverageofthe10differentrunsforthe10randomsplitsof theinputdatafortraining,validation,andtesting.

Table3showsaconfusionmatrixforthemeanofthe10runs, withoutconsideringthevotingstrategy,correspondingtothe test-ingdataset.Thesefindingsshowthatonaveragethenumberof falsepositivesisaround1%ofthemeannumberofnormal heart-beats,whilethefalsenegativesarearound3%ofthetotalnumber ofheartbeatsinCHFclass.

Acloseranalysisofoneoftherunsrevealedthatoutofthetotal of854misclassifiedCHFbeats,614belongedtothesamesubject (id:chf01).Thesameappliedtothecontrolgroup,where478beats thatweremisclassifiedbelongedtothesamesubject(id:16272). Nonetheless,thenumberofmisclassifiedbeatsforthesetwo sub-jectswasnegligible,representingaround2%–4%ofthetotalnumber ofbeatsthatwereextractedforthetwosubjects.Inotherwords, subjects16,272andchf01couldstillbecorrectlycategorizedas healthyandCHFsubjectsrespectively,becausemorethan95%of theirheartbeatswereappropriatelyclassified.The5consecutive heartbeatswereacceptedtobeverysimilar,thusaveragingthem shouldnotresultinsignificantchangesintheheartbeat

morphol-ogy.We confirmedthisoccurrencebyperforminganadditional simulation inwhich weaveragedtheheartbeatsin 5sinterval. Asexpected,weobservednochangeintheperformanceofthe classifier.

3.2. Classificationusingmajorityvotinginaspecifictimeframe Weemployed a“majority votingscheme”for theheartbeats withina5-minutesECG timeframetoenabledirect comparison withpreviousstudiesusingshort-termHRVfeaturescomputedon 5-minutesECGsegments(seeSection2.3fordetails).Insum,the classassociatedwitha5-minutesECGsegmentwasthemajority classoftheindividualheartbeatsin thatsegment.Usingsucha votingstrategy,wecouldevaluatetheaccuracyofourmethodin discriminatingbetweenhealthyandCHFpatientswhenusing 5-minutesECGrecordings.Alltheperformancemeasuresconsidered (i.e.,ACC,Sens,Spec,andAUC)improvedby99%when employ-ingthe5-minutesvotingincomparisontotheindividualheartbeat predictions.Moreover,themeannumber ofthemisclassified 5-minutesECGexcerptsusingthevotingschemeonthe10runswas 23outofatotalof2,227,whichcorrespondstoabout0.1%.

Theseresultssuggestthat,differentlyfromexistingevidence [23], a highly accurate model for CHF diagnosis can be built by using relatively short (∼5-minutes) raw ECG recordings.To furthercorroboratethisargument,weinvestigatedsubjectsand specifictimeframeswhereanymisclassified5-minutesECG seg-mentoccurred,asshown inTable4.Asamatterofillustration, herewepresentarandomlyselectedrun.Wecanobservethatout ofthetotalnumberof16subjectsincludedinthetestandvalidation datasets,5ofthempresentmisclassified5-minutesECGsegments. Fig.2presentsacloserinspectionoftheseresults.Itillustrates theheartbeatclassificationononeofthe10modelsweusedonthe training,validation,andtestingdatasetsincludingallthesubjectsof thisstudy.Onceagain,wecanreadilyappreciatethattheextracted heartbeatswerecorrectlyclassified(i.e.,themisclassified heart-beatsfor somesubjectsareconsiderablylessthan thecorrectly classifiedones).Moreover,themisclassifiedbeatsshowa consec-utivetrend,whichismostlikelyindicatinganoisyECGsegmentin therawrecording.Itmightalsobepossiblethatthesespecific heart-beatswereintrinsicallynot-discriminative,anissuethatcouldbe tackledbyextendingthetrainingdataset.Wefurthersupportthese propositionsbyillustratingthemisclassifiedECGexcerptsinFig.3, showingthatourmodel failedtoclassifyeithernoisysegments (e.g.,subjects16,272,19,830)orECGexcerptsaffectedby move-mentartifacts,asalsoacknowledgedbyindependentcardiological assessments.Thiscircumstancecaneasilybeconfirmedby inspect-ingthedatawiththeonlineviewerLightWAVE[50]fromPhysionet. 3.3. Classspecificsequences

Movingtothevisualizationfeatureofthemodel,Fig.4 repre-sentsasummaryofkeyregionsintheinputbeats,obtainedthrough

Table4

TestSubjectsWithMisclassified5-MinutesECGSegments.

SubjectID ECGsegmentstarttime→endtime SubjectID ECGsegmentstarttime→endtime

16795 13:10→13:15 17453 13:10→13:15 16795 13:30→13:40 16795 13:55→14:20 19093 4:35→4:40 16795 14:30→14:40 19093 21:55→22:25 16795 14:55→15:00 16795 15:30→15:40 19830 10:40→10:45 16795 15:50→15:55 16795 16:05→16:15 16272 16:05→16:10 16795 16:50→16:55 16272 16:15→17:05 16795 14:20→17:35 16272 17:30→17:35

(5)

Fig.2. Heartbeatsclassificationforallthesubjectsincludedinthetraining,validationandtestdatasets,evaluatedononeofthe10runs.Panelsb)andd)presentthe predictionsforthevotingina5-minuteswindowoftheindividualheartbeats.TheredandgreenbarsrepresenttheextractedheartbeatsinchronologicalorderforCHF patientsandhealthysubjects,respectively.Thegreygapsinthebarsaremissingdata.

Fig.3. ExampleofmisclassifiedECGsegmentsevaluatedonthevalidationandtestingdatasets.

Grad-CAM,thatareclassdiscriminative.ThetwoECGbeatsshown

inFig.4representtheaverageofalltheheartbeatsfromthe test-ingsetcorrespondingtothenormal(i.e.,green)andCHF(i.e.,red) classeswiththerespectiveerrorbands.Thehistogramsfeaturethe datapointsintheinputECGbeatsabove0.8inthenormalizedheat

mapsobtainedthroughGrad-CAM.Thesamplepointsthatwere foundtobesignificant(i.e.,wherethehistogrampointsreacheda thresholdof0.25)arepresentedinFig.4.Inotherwords,these are thepointsthat contributethemostin identifyingacertain class.

(6)

6 M.Porumb,E.Iadanza,S.Massaroetal./BiomedicalSignalProcessingandControl55(2020)101597

Fig.4.HistogramsobtainedfromtheGRAD-CAMheatmap,indicatingthemostimportantsamplepointsintheinputbeatsforacertainclass.

4. Discussion

WepresentedanovelandinnovativeframeworkforCHF detec-tionbasedonCNN.WhileCHFdetectionusingmachinelearning onECGhastraditionallyreliedontheextractionofHRVfeatures tobuildclassifiersabletodiscriminatebetweenhealthyandCHF subjects, in this study we substantially advanced this body of knowledgebyusingasinputdatarawECGheartbeats.

ThedevelopmentofsuchamodelallowstobypassHRV fea-turesextractionandselectionsteps,yet,andimportantly,without compromisingtheclassificationperformanceofthemodel.Indeed, asamatterofcomparison,themodelproposedbyIsleretal.[14] basedonshort-termHRVfeaturesextractedfromarandomly cho-sen5-minutesECGexcerptoutofthetotal24hECGrecordings, reportsaclassificationperformanceof∼96%sensitivityand speci-ficity.Thus,notonlyweimprovedtheseclassificationresults,but alsoweshowedthat99%ofthe5-minutesECGexcerptscouldbe usedforprovidingacorrectCHFdiagnosis.Wearguethatthese benefitsareduetotheabilityofCNNs’toautomaticallyextractand learnpatternsintheinputdata,ratherthanrelyingonspecialized featuresthatmightnotfullycapturethetruecharacteristicsofthe underlyingphysiologicalsignals.

Inthisthisstudywepurposivelychoseashallowarchitecture (i.e.,with3convolutionallayers),yetusinglargerfiltersizes. Exper-imentsperformed withdifferent CNN architectures reveal that similarclassification resultscanalsobeobtainedwithadeeper architectureand smallerfiltersizes.In ourcase,thenumber of neuronsintheMLPlayerdidhavegreatinfluenceonthemodel’s performanceand we observeda much faster convergencewith batchnormalizationthanwithout.

Anotherrelevant note concerns the difference betweenour workandthatbyAcharyaetal.[51]whoemployedaCNN-based modelforCHFdetection.Thecurrentstudyputsforward impor-tant benefits.First, as regardsthe evaluation methodology,the authorsin [51] used therecordings correspondingto a certain subjectforbothtrainingandtestingthemodel;here,instead,we consideredtheextractedheartbeatsonlyineitherthetrainingor testingdatasets for arun. Thatis,we dividedthesubjectsinto trainingandtestingsubsets,ratherthanusingtheir correspond-ingECG heartbeats.Moreover,differently fromthearchitecture proposedin[51],ourmodelissimplerbecauseitcontains3 con-volutionallayersonlyand nopoolingoperations,thusreducing

thecomputational complexity to thebenefit of possible future mobileapplications.TheCNNinputsaredifferenttoo:Inthe cur-rentstudy,we extractedindividual heartbeats,whereas in [51] ECGexcerptsof2swereusedasinputs.Thisrepresentsacritical strategythatourmodeladvancesbecauseitallowsusto investi-gatetheheartbeatmorphologyinconnectiontotheCHFdiagnosis through theGrad-CAM method(see Fig. 4).To thebest of our knowledge,thisisalsotheopeningevidenceinwhich discrimi-nativesegmentsintheinputheartbeatarerevealedfortheCHF diagnosis.

Finally, mean differences in the heartbeat morphology are clearlyshowninFig.4andthehistogramshighlighttheregionsin theinputheartbeatsthatweremostlyusedbytheCNNinmaking thepredictions.Thus,ourmodelallowstovisualizethosefeatures thatare automaticallylearnedduring theclassificationprocess. AccordingtoarecentstudybyTaylorandHobbs[52],heart fail-ureisassociatedwithabnormalECGin89%ofthecases.Moreover, Jamesetal.[53]showedthatheartfailurepatientshavesignificant prolongedQRSduration,prolongedQTduration,prolongedQTcand morerightwardTwaveaxis.Also,deLunaetal.[54]reportedlong QTintervalandvisiblevariationsoftheshape,amplitudeorpolarity oftheTwaveonanalternate-beatbasisasECGchangesassociated withheartfailure.InFig.4,wepresentedtwoheartbeats,obtained asaverageonallnormalandCHFheartbeatsincludedinthe avail-abledatasets.Wecanappreciatethatsomeofthemorphological changesreportedintheliteraturecanbeeasilyidentifiedinFig.4. Theseinclude,amongothers,flattened,prolongedTwave,visible changesintheamplitudeoftheTwave.Thehighlightedpartsin thenormalandCHFheartbeatsrepresenttheECGheartbeat subse-quenceusedbytheCNNnetworktogenerateaprediction.Whilst notenteringintoclinicalinterpretations,wecananywayobserve thattheidentifiedimportantpartsintheECGaremainlylocated nearthefiducialpoints(Q,RandTwaves).

AsshowninTable5,theclassificationresultssuggestthatthis methodishighlycompetitivewith,andinsomerespectsuperior to,previousmodelsusingHRVfeatures.Itisworthnoticingthat, whiletheclassificationprocesspresentedhereisperformedatthe heartbeatlevel,theobtainedresultscanbeeasilycomparedwith previousstudiesbyperformingaper-subjectclassification,using thepresentedvotingscheme,eitherfor5-minutesECGexcerptsor ontheentireECGrecording(i.e.,byquantifyingthemajorityclass predictedforalltheheartbeatscorrespondingtoeachsubject).

(7)

Table5

Classificationperformanceofthecurrentstudyascomparedtotheexistingliterature.

Author(s)(Year) Methods Data Results

Asyalietal.(2013)[17] Lineardiscriminantanalysis Bayesianclassifier BasedonHRVfeatures

1.NormalSinusRhythmRRIntervalDatabase 2.CongestiveHeartFailureRRIntervalDatabase 54normalsubjects 29CHFsubjects Sensitivity:0.82 Specificity:0.98 Accuracy:0.93 Isleretal.(2003)[14] k-NN BasedonHRVfeatures

1.NormalSinusRhythmRRIntervalDatabase 2.CongestiveHeartFailureRRIntervalDatabase 54normalsubjects

29CHFsubjects

Sensitivity:0.96 Specificity:0.96 Accuracy:0.96 Melilloetal.(2014)[12] CART

BasedonHRVfeatures

1.NormalSinusRhythmRRIntervalDatabase 2.MIT-BIHNormalSinusRhythmDatabase 3.CongestiveHeartFailureRRIntervalDatabase 4.BIDMBCongestiveHeartFailure

72normalsubjects 44CHFsubjects

Sensitivity:0.9 Specificity:1.0 Accuracy:0.96

Chenetal.(2015)[18] Non-equilibriumdecision-tree Nasedonsupportvector machineclassifier

Basedondynamicsof5-minute short-termHRVmeasures

1.NormalSinusRhythmRRIntervalDatabase 2.MIT-BIHNormalSinusRhythmDatabase 3.CongestiveHeartFailureRRIntervalDatabase 4.BIDMBCongestiveHeartFailure

72normalsubjects 44CHFsubjects

Accuracy:0.96

Liuetal.(2016)[15] SVNandk-NN

Non-standardHRVfeatures

1.NormalSinusRhythmRRIntervalDatabase 2.CongestiveHeartFailureRRIntervalDatabase 30normalsubjects

17CHFsubjects

Sensitivity:1.0 Specificity:1.0 Accuracy:1.0 Acharyaetal [51] Raw,2secondsECG

CNN

1.MIT-BIHNormalSinusRhythmDatabase 2.BIDMBCongestiveHeartFailure 3.Fantasia

Sensitivity:0.98 Specificity:0.99 Accuracy:0.98

Thisstudy RawECGheartbeats

CNNbasedmethod

1.MIT-BIHNormalSinusRhythmDatabase

2.BIDMBCongestiveHeartFailure

18normalsubjects

15CHFsubjects

Sensitivity:1.0

Specificity:1.0

Accuracy:1.0

Inourmodel,theerrorinthesubjects’classificationisnil:Each subjectiscorrectlyclassifiedasbeingeitherhealthyoraffectedby CHF.Previously,Liuetal.[15]presentedwhattothebestofour knowledgeistheonlyothersystemachievingasimilaraccuracy inCHFdetection.Yet,ourworkfocusesonapurposivelyselected sampleofsubjectsratherthanontheentirepoolavailableinthe originaldatasets.Themisclassifiedheartbeatsaretrivialin com-parisontothecorrectlyclassifiedones,indicating100%accuracy fortheclassificationatthesubjectlevel,asevidentinFig.2.

Addedtotheirsuperiorperformance,ourresultsbringforward theintuitionthatshortECGrecordings,ofjustabout5min,canbe sufficienttocorrectlydiagnosesevereCHF.Thisisanimportant resultbecause,withtheincreasingavailabilityofwearabledevices capturinginterimECGrecordings(e.g.,smart-watches),accurate CHFdetectionandpredictionmightbesoonperformedthrough devicespeoplecarryineverydaysituations.Inthisrespect,current approacheshavelookedatHRV,whichisconventionallyanalyzed using5-minexcerpts,ifnotlonger(e.g.,nominally24h).However, physiologicalphenomenarunningovermuch shortertimespans mightnotbefullycapturedwhenconsideringsuchlongexcerpts. Thus,byusingindividuallyextractedheartbeatstoprovidean accu-ratediagnosticprediction,theapproachproposedherefacilitates futureimplementationintoreal-timesystemstowardsthe real-ization of a Clinical Decision Support System (CDDS). In CDDS envisionedend-usersarenotonlyexperiencedcardiologists,but alsopatients,caregivers,generalpractitioners,nurses,trainees,and soforth.Moreover,oncetrained,thenetworkrespondsinavery shorttimeandcanbeembeddedintomobilephonesordeployed tocloudarchitectures,aswealreadydiscussedelsewhere[13,55]. Ourstudymustalsobeseeninlightofitslimitations,which anywayrepresentvaluablecallsforfutureresearchavenues.First, theCHFsubjectsusedinthisstudysufferfromsevereCHFonly(i.e., NYHAclassesIII-IV);thediscriminationcouldyieldlessaccurate resultsformilderCHF(i.e.,NYHAclassesI-II).Second,theuseof

acknowledgedpublicdatasetsincludingrawECGsignalswasaimed atimprovingtheopportunityforcomparisonandtransparencyof science.Yet,thischoicenecessarilyresultedinadatasetwhich,at thesubjectlevel,isonaveragesmallerthanthoseusedinother models.Futurestudieswillneedtoextendtheresultspresented hereinlargerdatasets.

Finally, we would like toencourage future research as well asclinicalpracticetoapplythisframeworktothepre-diagnostic assessment of CHF. This strategy will not only allow further model’s validation, but it will also enable moving from retro-spectivedetectiontoprospectivediagnosis,potentiallyimproving humanwell-being,reducinghealthcarecosts,andhopefullyeven savinglives.

5. Conclusions

Inthisarticleweproposedanovelandhighly-effectivemethod forCHFdetectionbasedonCNNs.Comparedtoexistentmodels theaddedvalueofourmodelisthatitusesrawECGsignals,rather thanHRVfeatures,andyieldsprominentaccuracyindetectingCHF. Indeed,weshowedthattheperformanceoftheCNNmodelholds considerablyhighscoreswhentheclassificationisperformedatthe heartbeatlevel,anditiserror-freeaspertainsthesubject classifi-cationcomponent.Moreover,thisisthefirststudyusingadvanced machinelearningapproachestorevealwhichmorphological char-acteristicsoftheECGbeatsarethemostimportanttoefficiently detectCHF.Webelievethatthisisacrucialcontributionforclinical practicebecauseclinicians,whoareultimatelyresponsibleforCHF patients,aregenerallyrefractorytotheadoptionofmethodsthat arenotfullytransparentinshowinghowcertaindecisionswere reached.Ourmethodsuccessfullyrespondstothisissue.

Finally,wearehopefulthatthemodelprovidedherewillbeused asa highly-effectiveand generalizableclassificationmethodfor othertimeseriesclassificationtasksinmedicineandbeyond(e.g.,

(8)

8 M.Porumb,E.Iadanza,S.Massaroetal./BiomedicalSignalProcessingandControl55(2020)101597 inneuro-behavioralresearch[56]).Wethuscallforfutureworks

toexpandtheresultspresentedinthisstudytowardsimproving humanwellbeing andreducing currenthealthcarefinancial and societalburdens.

Acknowledgement

WewouldliketothankDr.DindealAlinandDr.MoldovanEmil forassessingtheECGexcerptsthatresultedasmisclassifiedbyour model.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

References

[1]J.J.McMurray,S.Stewart,Epidemiology,aetiology,andprognosisofheart failure,Heart83(May(5))(2000)596–602.

[2]D.M.Lloyd-Jones,etal.,Lifetimeriskfordevelopingcongestiveheartfailure: theFraminghamHeartStudy,Circulation106(December(24))(2002) 3068–3072.

[3]P.Ponikowski,etal.,Heartfailure:preventingdiseaseanddeathworldwide, ESCHeartFail.1(September(1))(2014)4–25.

[4]S.Stewart,K.MacIntyre,S.Capewell,J.J.V.McMurray,Heartfailureandthe agingpopulation:anincreasingburdeninthe21stcentury?Heart89 (January(1))(2003)49–53.

[5]M.W.Rich,Epidemiology,pathophysiology,andetiologyofcongestiveheart failureinolderadults,J.Am.Geriatr.Soc.45(August(8))(1997)968–974. [6]B.M.Massie,N.B.Shah,Evolvingtrendsintheepidemiologicfactorsofheart

failure:rationaleforpreventivestrategiesandcomprehensivedisease management,Am.HeartJ.133(June(6))(1997)703–712.

[7]J.M.Vinson,M.W.Rich,J.C.Sperry,A.S.Shah,T.McNamara,Earlyreadmission ofelderlypatientswithcongestiveheartfailure,J.Am.Geriatr.Soc.38 (December(12))(1990)1290–1295.

[8]J.B.O’Connell,Theeconomicburdenofheartfailure,Clin.Cardiol.23(March (3Suppl.))(2000)III6–10.

[9]A.P.Ambrosy,etal.,Theglobalhealthandeconomicburdenof hospitalizationsforheartfailure:lessonslearnedfromhospitalizedheart failureregistries,J.Am.Coll.Cardiol.63(April(12))(2014)1123–1133. [10]C.Berry,D.R.Murdoch,J.J.V.McMurray,Economicsofchronicheartfailure,

Eur.J.HeartFail.3(June(3))(2001)283–291.

[11]E.E.Tripoliti,T.G.Papadopoulos,G.S.Karanasiou,K.K.Naka,D.I.Fotiadis,Heart failure:diagnosis,severityestimationandpredictionofadverseevents throughmachinelearningtechniques,Comput.Struct.Biotechnol.J.15 (January)(2017)26–47.

[12]P.Melillo,R.Fusco,M.Sansone,M.Bracale,L.Pecchia,Discriminationpower oflong-termheartratevariabilitymeasuresforchronicheartfailure detection,Med.Biol.Eng.Comput.49(January(1))(2011)67–74. [13]L.Pecchia,P.Melillo,M.Bracale,Remotehealthmonitoringofheartfailure

withdataminingviaCARTmethodonHRVfeatures,IEEETrans.Biomed.Eng. 58(March(3))(2011)800–804.

[14]Y. ˙Is¸ler,M.Kuntalp,CombiningclassicalHRVindiceswithwaveletentropy measuresimprovestoperformanceindiagnosingcongestiveheartfailure, Comput.Biol.Med.37(October(10))(2007)1502–1510.

[15]G.Liu,L.Wang,Q.Wang,G.Zhou,Y.Wang,Q.Jiang,Anewapproachtodetect congestiveheartfailureusingshort-termheartratevariabilitymeasures, PLoSOne9(April(4))(2014),e93399.

[16]Z.Masetic,A.Subasi,Congestiveheartfailuredetectionusingrandomforest classifier,Comput.MethodsProgramsBiomed.130(July)(2016)54–64. [17]M.H.Asyali,Discriminationpoweroflong-termheartratevariability

measures,Proceedingsofthe25thAnnualInternationalConferenceofthe IEEEEngineeringinMedicineandBiologySocietyvol.1(2003)200–203. [18]W.Chen,L.Zheng,K.Li,Q.Wang,G.Liu,Q.Jiang,Anovelandeffectivemethod

forcongestiveheartfailuredetectionandquantificationusingdynamicheart ratevariabilitymeasurement,PLoSOne11(November(11))(2016). [19]G.Guidi,M.C.Pettenati,R.Miniati,E.Iadanza,RandomForestforautomatic

assessmentofheartfailureseverityinatelemonitoringscenario,Annual InternationalConferenceoftheIEEEEngineeringinMedicineandBiology Societyvol.2013(2013)3230–3233.

[20]G.Guidi,L.Pollonini,C.C.Dacso,E.Iadanza,Amulti-layermonitoringsystem forclinicalmanagementofCongestiveHeartFailure,BMCMed.Inform.Decis. Mak.15(Suppl.3)(2015)S5.

[21]G.Guidi,M.C.Pettenati,R.Miniati,E.Iadanza,Heartfailureanalysis dashboardforpatient’sremotemonitoringcombiningmultipleartificial intelligencetechnologies,AnnualInternationalConferenceoftheIEEE EngineeringinMedicineandBiologySocietyvol.2012(2012) 2210–2213.

[22]U.RajendraAcharya,K.PaulJoseph,N.Kannathal,C.M.Lim,J.S.Suri,Heart ratevariability:areview,Med.Biol.Eng.Comput.44(December(12))(2006) 1031–1051.

[23]L.Pecchia,P.Melillo,M.Sansone,M.Bracale,Discriminationpowerof short-termheartratevariabilitymeasuresforCHFassessment,IEEETrans.Inf. Technol.Biomed.15(January(1))(2011)40–46.

[24]A.Krizhevsky,I.Sutskever,G.E.Hinton,ImageNetclassificationwithdeep convolutionalneuralnetworks,USA,in:Proceedingsofthe25thInternational ConferenceonNeuralInformationProcessingSystems,vol.1,2012,pp. 1097–1105.

[25]StanfordUniversityCS231n:ConvolutionalNeuralNetworksforVisual Recognition.[Online].Available:http://cs231n.stanford.edu/.

[26]Y.LeCun,Y.Bengio,G.Hinton,Deeplearning,Nature521(May(7553))(2015) 436–444.

[27]Y.Zheng,Q.Liu,E.Chen,Y.Ge,J.L.Zhao,Exploitingmulti-channelsdeep convolutionalneuralnetworksformultivariatetimeseriesclassification, Front.Comput.Sci.China10(February(1))(2016)96–112.

[28]Z.Wang,W.Yan,T.Oates,Timeseriesclassificationfromscratchwithdeep neuralnetworks:astrongbaseline,2017InternationalJointConferenceon NeuralNetworks(IJCNN)(2017)1578–1585.

[29]Z.Cui,W.Chen,Y.Chen,Multi-ScaleConvolutionalNeuralNetworksforTime SeriesClassification,ArXiv160306995Cs,Mar.,2016.

[30]A.Graves,A.Mohamed,G.Hinton,Speechrecognitionwithdeeprecurrent neuralnetworks,in:2013IEEEInternationalConferenceonAcoustics,Speech andSignalProcessing,2013,pp.6645–6649.

[31]A.Y.Hannun,etal.,Cardiologist-levelarrhythmiadetectionandclassification inambulatoryelectrocardiogramsusingadeepneuralnetwork,Nat.Med.25 (January(1))(2019)65.

[32]S.Kiranyaz,T.Ince,M.Gabbouj,Real-timepatient-specificECGclassification by1-Dconvolutionalneuralnetworks,IEEETrans.Biomed.Eng.63(March (3))(2016)664–675.

[33]Z.C.Lipton,D.C.Kale,C.Elkan,R.Wetzel,LearningtoDiagnoseWithLSTM RecurrentNeuralNetworks,ArXiv151103677Cs,Nov.,2015.

[34]M.Fiterau,J.Fries,E.Halilaj,N.Siranart,C.Ré,Similarity-basedLSTMsfor timeseriesrepresentationlearninginthepresenceofstructuredcovariates, ConferenceonNeuralInformationProcessingSystems(2016)7.

[35]F.Doshi-Velez,B.Kim,TowardsARigorousScienceofInterpretableMachine Learning,ArXiv170208608CsStat,Feb.,2017.

[36]S.Chakraborty,etal.,Interpretabilityofdeeplearningmodels:asurveyof results,in:2017IEEESmartWorld,UbiquitousIntelligenceComputing, AdvancedTrustedComputed,ScalableComputingCommunications,CloudBig DataComputing,InternetofPeopleandSmartCityInnovation,2017,pp.1–6. [37]R.R.Selvaraju,M.Cogswell,A.Das,R.Vedantam,D.Parikh,D.Batra,

Grad-CAM:visualexplanationsfromdeepnetworksviagradient-based localization,in:2017IEEEInternationalConferenceonComputerVision (ICCV),2017,pp.618–626.

[38]TheArrhythmiaLaboratoryAtBoston’sBethIsraelHospital(NowTheBeth IsraelDeaconessMedicalCenter),TheMIT-BIHNormalSinusRhythm Database,1990physionet.org.

[39]A.L.Goldberger,etal.,PhysioBank,PhysioToolkit,andPhysioNet:components ofanewresearchresourceforcomplexphysiologicsignals,Circulation101 (June(23))(2000)e215–e220.

[40]D.S.Baim,etal.,TheBIDMCCongestiveHeartFailureDatabase,2000 physionet.org.

[41]P.Melillo,E.Pacifici,A.Orrico,E.Iadanza,L.Pecchia,heartratevariabilityfor automaticassessmentofcongestiveheartfailureseverity,XIIIMediterranean ConferenceonMedicalandBiologicalEngineeringandComputing(2013) 1342–1345.

[42]J.S.Bridle,Probabilisticinterpretationoffeedforwardclassificationnetwork outputs,withrelationshipstostatisticalpatternrecognition,Neurocomputing (1990)227–236.

[43]S.Ioffe,C.Szegedy,Batchnormalization:acceleratingdeepnetworktraining byreducinginternalcovariateshift,InternationalConferenceonMachine Learning(2015)448–456.

[44]V.Nair,G.E.Hinton,RectifiedlinearunitsimproverestrictedBoltzmann machines,Proceedingsofthe27thInternationalConferenceonInternational ConferenceonMachineLearning(2010)807–814.

[45]K.He,X.Zhang,S.Ren,J.Sun,Deepresiduallearningforimagerecognition, 2016IEEEConferenceonComputerVisionandPatternRecognition(CVPR) (2016)770–778.

[46]B.Zhou,A.Khosla,A.Lapedriza,A.Oliva,A.Torralba,Learningdeepfeatures fordiscriminativelocalization,2016IEEEConferenceonComputerVisionand PatternRecognition(CVPR)(2016)2921–2929.

[47]D.P.Kingma,J.Ba,Adam:amethodforstochasticoptimization,Proceedings ofthe3rdInternationalConferenceonLearningRepresentations(2015). [48]X.Glorot,Y.Bengio,Understandingthedifficultyoftrainingdeepfeedforward

neuralnetworks,ProceedingsoftheThirteenthInternationalConferenceon ArtificialIntelligenceandStatistics(2010)249–256.

[49]M.Abadi,etal.,TensorFlow:Large-ScaleMachineLearningonHeterogeneous DistributedSystems,2015.

[50]LightWAVE0.64.[Online].Available:https://www.physionet.org/lightwave/. (Accessed28January2019).

[51]U.R.Acharya,etal.,Deepconvolutionalneuralnetworkfortheautomated diagnosisofcongestiveheartfailureusingECGsignals,Appl.Intell49 (January(1))(2019)16–27.

(9)

[52]C.Taylor,R.Hobbs,Diagnosingheartfailure–experienceand‘Bestpathways’, Eur.Cardiol.Rev.6(3)(2010)10–12.

[53]S.James,etal.,22roleof12-leadelectrocardiographyinpredictingheart failureinthecommunity,Heart101(September(Suppl.5))(2015)46–49. [54]A.B.deLuna,BasicElectrocardiography:NormalandAbnormalECGPatterns,

1edition,Wiley-Blackwell,Malden,MA,2007.

[55]P.Melillo,A.Orrico,P.Scala,F.Crispino,L.Pecchia,Cloud-basedsmarthealth monitoringsystemforautomaticcardiovascularandfallriskassessmentin hypertensivepatients,J.Med.Syst.39(October(10))(2015)109.

[56]S.Massaro,L.Pecchia,Heartratevariability(HRV)analysis:amethodologyfor organizationalneuroscience,Organ.Res.Methods22(January(1))(2019) 354–393.

Riferimenti

Documenti correlati

The present study, a secondary analyses of the Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) trial, which randomized patients receiving hemodialysis

It seems very promising to study how heart rate and its variability relate to drivers’ different levels of sleepiness, extracting particular features from the heart rate signal, in

Durante l’analisi dei dati è stato visto che i pazienti che avevano eseguito la terapia neoadiuvante e inoltre avevano resecato altre arterie oltre all’arteria mesenterica superiore

La distribuzione delle segnalazioni non è omogenea, ma interessa in misura maggiore le province di LI, MS e SI (Tabella 1), con particolare riferimento ai territori dell’Isola

Furthermore, the CSI values highlighted that cortisol treatment, and in particular, the high- est concentration, oppositely affected male and female cells, shifting the cytokine

While increasing the normal load, the average value of the force is increasing, indicating a state with larger kinetic friction, and the profile shows a transition between a

L’esplicitazione degli esiti di questo lavoro e dei suoi pre- supposti metodologici costituisce l’occasione per una riflessione sul SH come tema di ricerca, “letto” nella

Recent work on Conditional Simple Temporal Networks (CSTNs) has introduced the problem of checking the dynamic consistency (DC) property for the case where the reaction of an