• Non ci sono risultati.

2.  Geological  background 2.1.  The  Mediterranean  area

N/A
N/A
Protected

Academic year: 2021

Condividi "2.  Geological  background 2.1.  The  Mediterranean  area"

Copied!
16
0
0

Testo completo

(1)

2.  Geological  background

2.1.  The  Mediterranean  area

The  geological  complexity   observed  in  the  Mediterranean  area  is  mainly   the  result  of  a   composite  paleogeographical  and  geodynamical  evolu9on  due  to  the  rela9ve  movements   between  African  and  European  plates  (Fig.  1).

Fig.  1:  Simplified  tectonic  map  of  the  Mediterranean  region  (Pla:,  2007)

The  geotectonic  processes  involving  this  area  can  be  schema9cally  divided  into  four  main   phases:

1. Opening  Oceanic  phase  (Middle  Jurassic  -­‐  Upper  Jurassic); 2. Transi9on  phase  (Lower  Cretaceous);

3. Oceanic  convergence  phase  (Late  Cretaceous  -­‐  Middle  Eocene); 4. Con9nental  collision  phase  (from  Late  Eocene).

The   first   two   phases   are   responsible   for   the   forma9on   of   different   oceanic   and   con9nental  domains  that  will  be  involved  during  the  convergence  and  collisional  phases.  The   convergence  started  in  the  Late  Cretaceous  had  as  a  major  effect  the  forma9on  of  important   orogenic  belts  all  around  the  Mediterranean  area  (PlaQ,  2007  and  references  therein).

2.2.  The  Apennines

The  Apennines  are  a  mountain  range  along  approximately   1200  km   through  the  Italian   peninsula,  drawing  an  arc  from  north  to  south  with  the  convex  side  facing  the  Adria9c  Sea.  

(2)

The  Colle  di  Cadibona  in  Liguria  forms  the  northern  end,  while  the  Aspromonte  gives  the   southern   end,   across   the   StreQo   di   Messina   to   Calabria.   The   width   extension   of   the   Apennines  varies  from  a  minimum  of  30  km  to  a  maximum  of  250  km.  The  Appennines  are   usually  subdivided  in  two  zones:  the  Northern  and  the  Southern  Apennines  characterised  by   different  deforma9on  styles,  exten9on  rate  and  orienta9on  (PlaQ,  2007).  These  two  sectors   are   joined   in   correspondence   of   an   important   lithospheric   discon9nuity   represented   by   Ortona-­‐Roccamonfina   line   (Di   Bucci   &   Tozzi,   1991).   The   Northern   Apennines   have   an   extension  of  more  than  500  km,  from  Liguria  to  Abruzzo,  and  is  separated  from  the  Alps  by   the  Sestri-­‐Voltaggio  line  (Scholle,  1970;  Crispini  &  Capponi,  2007).  They  have  a  predominant   NW-­‐SE  structural  direc9on  and  the  tectonic  style  is  dominated  by   thrust  with  both  duplex   structures  and   imbricate  fans.   The  building   structure  can  be  defined  as  a  thrust-­‐and-­‐fold   belt,   consis9ng   of   sets  of   strongly   deformed   superimposed   tectonic   units.   The  Southern   Apennines  includes  Abruzzo,  Molise  and  Campania,  and  has  a  predominant  NE-­‐SW  direc9on.   The  tectonic  style  is  dominated  by  large-­‐scale  duplex  (Cello  &  Mazzoli,  1998).

The   Apennine   chain   has   been   formed   as   a   result   to   the   convergence   and   collision   between  the  African  and  European  plates.  The  convergence  started  in  the  Late  Cretaceous   caused   the   collision   (from   the   Eocene)   between   Sardinia-­‐Corsica  Massif   and   Adria,   two   microplates   belonging   to   the   European   and   African   domains   respec9vely.   During   the   convergence  the  Apennines  area  experienced  a  series  of  kinema9c   processes  (subduc9on,   back-­‐arc  basin  opening,  strike-­‐slip  faul9ng  and  lateral  extrusion  of  lithospheric  blocks).  The   convergence   produced   a   W-­‐dipping   subduc9on   of   the   Adria   microplate  below   Sardinia-­‐ Corsica  block  with   the  opening   of   back-­‐arc   basins  (Provençal  Basin;   Southern   Tyrrhenian   Basin)  (Fig.  2).

(3)

Fig.  2:  Present-­‐day  tectonic  framework  and  deep  structure  of  the  central  Mediterranean  region (Faccenna  et  al.,  2007)

Different  sectors  of  the  orogenic  chain  have  undergone  these  processes  in  different  9mes   due  to  eastward   subduc9on   zone  retreat   and   slab   rollback.   For   these   reasons,   both   the   compressional  (crustal  thickening  and  stacking  of  tectonic  units)  that  the  extensional  phases   (back-­‐arc  basin  opening  of  the  western  Mediterranean)  migrated  through  9me  from  west  to   east   (Faccenna   et   al.,   2007   and   references   therein).   Related   to   the   extensional   phase   occurred   the   magma9sm   involving   different   sources   and   capable   of   producing   the   complexity  of  the  Italian  magma9sm  (Serri  et  al.,  2001).

2.3.  Tuscany

Tuscany   is  located  in  the  inner   part  of   the  Northern  Apennines.   In  this  area  4  different   paleogeographic  domains  crop  out,  from  top  to  boQom  as  follows:

1. Ligurian   Domain:   characterized   by   oceanic   rocks   (Jurassic)   and   their   sedimentary  cover  (Cretaceous-­‐Eocene).

(4)

2. Sub-­‐Ligurian  Domain:  it  represent  the  transi9on  zone  between  the  oceanic   crust   (Ligurian   Domain)   and   con9nental   crust   (Tuscan   Domain),   covered   by   terrigenous  turbidi9c  sediments  (Late  Cretaceous  -­‐  Oligocene).

3. Tuscan  Domain:   it   is  divided   into  two  subunits.   The  Internal  Tuscan  sub-­‐ Domain  (Tuscan  Nappe)  is  composed   of  non-­‐metamorphic   rocks  and/or   very   low  grade  (anchizone  metamorphism),  consis9ng  of  evaporites  (Upper  Triassic)   followed   by   carbonate-­‐siliceous  sequence  (Early   Jurassic   –   Early   Cretaceous),   and   a   clayey   and   turbidi9c   succession   (Cretaceous   -­‐   late   Oligocene).   The   External   Tuscan   sub-­‐Domain   (e.g.,   Autoctono   Apuano,   Mon9   Pisani   and   Mon9ciano-­‐Roccastrada   Units)   show   similar   stra9graphic   sequence   but   was   metamorphosed   in  greenschist   facies  condi9ons.   This  stra9graphic   sequence   overlies  a  Paleozoic   basement   composed   of  phyllite-­‐quartzite  and  micaschist   (Silurian  -­‐  Devonian),  sandstone  and  phyllite  (Middle-­‐Late  Carboniferous  –  Early   Permian)  and  meta-­‐conglomerates,  quartzi9es  and  phyllite  (Verrucano;  Middle-­‐ Early  Triassic).

4. Umbria-­‐Marche  Domain:   it   is  formed   by   con9nental  deposits   overlying   a   Permian  –  Triassic  basement.  The  sedimentary  sequence  begins  with  evaporites   (Upper   Triassic)   followed  by   a  sequence   of   carbonate  rocks  (Early   Jurassic   -­‐   Eocene),  and  terrigeneous  sequence  (Eocene  -­‐  Pliocene)  (Decandia  et  al.,  2001   and  references  therein).

During  the  Neogene  an  extensional  phase  affected  the  Tuscany   area.   This  area  can  be   divided   into   two   por9ons   separated   by   the   Livorno-­‐Sillaro   line   and   according   to   their   extension  rate.   The  Livorno-­‐Sillaro  is  the  main  strike-­‐slip   fault   of  the  Northern  Apennines     and  is  SW-­‐NE  oriented.  

The   opening   of   the   Northern   Tyrrhenian   Basin   is   the   principal   evidence   of   ac9ve   extension  since  Early  –  Middle  Miocene.  Various  authors  dis9nguish  two  (Carmignani  et  al.,   1994)   or   three   (Decandia   et   al.,   2001)   different   extensional   events,   but   both   are   in   agreement  with  an  early  stage  (D1  for  Carmignani  et  al.,  1994;  D1  and  D2  for  Decandia  et  al.,   2001)  characterized  by  low-­‐angle  extensional  faults.  The  faults  cause  the  omission  of  parts  of   the  Tuscan  Nappe  stra9graphic  sequence.  This  structural  characteris9c  is  commonly  known   as  "Serie  RidoQa".  This  early   extensional  stage  produced  an  extension  rate  exceeding  120%   during  Late  Oligocene  -­‐  Late  Tortonian  (Carmignani  et  al.,  1994).  The  extensional  late  phase   (D2  for  Carmignani  et  al.,  1994;  D3  for  Decandia  et  al.,  2001)  is  characterized  by  high-­‐angle   normal  faults  oriented  NNW-­‐SSE  and  N-­‐S.  The  horst  and  graben  structures  developed  during   this  second  phase  and  are  cut   by   strike-­‐slip  faul9ng   oriented   SW-­‐NE   (e.g.,   Livorno-­‐Sillaro  

(5)

Line).  The  es9ma9on  of  the  extensional  rate  does  not  exceed  10%  (Carmignani  et  al.,  1994)   (Fig.  3).

Fig.  3:  Structural-­‐geological  sketch  map  of  Northern  Apennines  (Decandia  et  al.,  2001)

Some  authors  propose  that  the  compressional  tectonics  in  Northern  Appennines  con9nue   un9l   Pliocene   or   Pleistocene   9mes   also   with   mul9ple   compression-­‐extension   transi9ons   (Finei   et  al.,   2001;   Bonini  &   Sani,  2002;   Musumeci  et   al.,   2008).   Boccalei   et   al.,  (2011)   propose   a   superposi9on   of   a   shallow   extensional   stress   field   with   a   deeper   level   compression.  

The  thinning  of   the  con9nental  crust   reaches  a  minimum   (about   25   km   depth)   at   the   border  of  the  Tyrrhenian  Sea  in  Southern  Tuscany  (PlaQ,  2007  and  references  therein).  This   thinning  produced  mantle  doming   beneath  the  Southern  Tuscany,   which  is  the  cause  of  a   high   heat   flow,   as   demonstrated   by   the   presence   of   numerous   geothermal   fields   (e.g.,   Larderello-­‐Travale,  M.  Amiata)  and  magma9sm  (Tuscan  Magma9c  Province  -­‐  TMP).

Another   important  geophysical  feature  is  the  presence  in  the  upper   mantle  of   an  area   with   low   seismic   velocity   interpreted  as  tectonic   slice   of   upper   crust   within   the   mantle   (crustal  doubling)  or  as  par9ally  molten  mantle  material  (e.g.,  metasoma9c  veins)  (Peccerillo   &  Dona9,  2003;  Peccerillo,  2005).

2.3.1.  The  Tuscan  Magma=c  Province  (TMP)

(6)

igneous  rocks  in  a  certain  region  showing  spa9al  and  temporal  rela9onships.  Subsequently,   Washington   (1906),   in   order   to   emphasize   this  concept,   used   the  term   comagma9c,   to   indicate  a  common   origin   for   magma9c   rocks   of   a  certain   region.   The   defini9on   that   is   commonly  used  for  the  Tuscan  Magma9c  Province  (TMP)  provides  only  temporal  and  spa9al   rela9ons,  but  not  gene9c.  In  the  TMP  all  the  igneous  rocks  are  grouped  in  the  inner  part  of   Northern  Appennines  chain  emplaced  aler  the  con9nental  collision  began.

The  outcrop  area  of  TMP   rocks  can  be  confined  between  the  Sardinia-­‐Corsica  block  to   west,   the  41°N   parallel  to   south  (one  of  the  principal  lithospheric   discon9nuity),   and   the   Ancona-­‐Anzio   line  to   east.   The  TMP   is  characterized   by   a  suite   of   magma9c   rocks,   from   intrusive  to  effusive  and  from  felsic  to  mafic   that  had  been  emplaced  since  about   14   Ma.   According  to  the  eastward  subduc9on  zone  retreat  the  age  of  magma9c  rocks  is  gradually   younger   proceeding   from   W   (Sisco,   14   Ma)   to   E   (e.g.,   Monte  Amiata,   0.3-­‐0.2   Ma;   Torre   Alfina,  0.88  Ma)  (Innocen9  et  al.,  1992).

According  to  Innocen9  et  al.,  (1992),  they   can  be  divided,  on  the  basis  of  the  temporal   and  spa9al  distribu9on,  into  4  dis9nct  phases:

Phase  1:   The  emplacement   of   the   lamproi9c   magmas  at   Sisco   in   northeastern   Corsica  (the  oldest  and  the  most  westernmost  magma9c  rocks  of  TMP).  These  rocks   are  interpreted  as  the  first  products  related  to  post-­‐collisional  extensional  phase  that   affects  the  inner  part  of  the  Apennines.

Phase  2:   it  took  place  between  7.3   and  6.2  Ma  and  it   includes  the  Montecristo   pluton  (about  7.1  Ma),  the  Vercelli  seamount  (about  7.2  Ma),  the  western  magma9c   complex   at   Elba  Island  (about   8   to  6.85   Ma)  and  the  first   period  of   ac9vity   of   the   composite  Capraia  volcano  (about  7.6  -­‐  7  Ma)  (Innocen9  et  al.,  1992).

Phase  3:   it   is  documented  by   the   Porto   Azzurro  pluton  (about   5.9   Ma),   Giglio   (about  5  Ma),  Campiglia  Mariima  and  San  Vincenzo  Rhyolites  (about  5.7  -­‐  4.3  Ma),   Castel  di  Pietra  hidden   intrusion  (about   4.3   Ma),   Monteverdi  (about   3.8   Ma)   and   Roccastrada  (about  2.5  to  2.2  Ma).  This  phase  also  included  the  Orcia9co  (about  4.1   Ma)  and  Monteca9ni  Val  di  Cecina  (about  4.1   Ma)  lamproites,  the  second  period  of   ac9vity  of  Capraia  (about  4.6  -­‐  3.5  Ma)  and  the  volcanic  rocks  of  Tolfa  district  (about   4.2  -­‐  1.8  Ma)  (Innocen9  et  al.,  1992).

Phase  4:   it   took  place  between   1.3   Ma  and   0.3   -­‐   0.2   Ma.   It   include  Radicofani   (about   1.3  Ma),   Mon9   Cimini  (about   1.3   to  0.94   Ma),   Torre  Alfina  (about   0.88  Ma)   and  Monte  Amiata  (about  0.3  -­‐  0.2  Ma)  (Barberi  et  al.,  1967;   Innocen9  et  al.,  1992;   Dini  et  al.,  2002;  Peccerillo  &  Dona9,  2003;  Perugini  &  Poli,  2003;  Rocchi  et  al.,  2003;   Fig.  4).

(7)

Fig.  4:  LocaLon  map  for  the  Tuscan  MagmaLc  Province.  Also  reported  are  the  younger  potassic– ultrapotassic  volcanic  rocks  of  the  Roman  MagmaLc  Province  (Dini  et  al.,  2002)

The   TMP   is   a   complex   magma9c   province   with   magma9c   rocks   ranging   from   felsic   (granites  and  peraluminous  rhyolites)  to  intermediate  and  mafic  rocks  (high-­‐K   calcalkaline,   shoshoni9c,  alkaline  potassic  and  ultrapotassic  lamproi9c).  For  these  reasons,  the  TMP  is  not   a   comagma9c   province   because   the   variability   observed   cannot   be   explained   through   differen9a9on   processes   from   a   unique   original   magma   type.   Moreover,   it   should   be   emphasized  that   almost   all  magma9c   rocks  recorded  mixing   processes  between  two  end-­‐ members:   a  crustal-­‐anatec9c   magma  and   a  mantle-­‐derived   magma  (Peccerillo   &   Dona9,   2003  and  references  therein).

The   felsic   rocks,   generated   by   processes   of   crustal   anatexis,   as   indicated   by   the   petrological,  geochemical  and  isotopic  data,  can  be  lava  flows  (San  Vincenzo,  Roccastrada,   Monte   Amiata   and   Mon9   Cimini),   plutonic   bodies   (Elba   Island,   Montecristo,   Giglio,   Gavorrano,   Campiglia  Mariima,   seamounts  in  the  Tyrrhenian   Sea  and  hidden  intrusions)   and,   more  rarely,   pyroclas9c  rocks  (Mon9   Cimini  and  Tolfa).  For  all  the  felsic  rocks  of   the   TMP   the   petrographic   (including   the  presence  of   mafic),   geochemical  and   isotopic   data   (disequilibrium  among  phenocrysts,  between  phenocrysts  and  groundmass  and  varia9on  of   the  87Sr/86Sr   ra9o)   are  in   agreement   with   a  mixing   between   crustal   anatec9c   melt   and  

(8)

mantle-­‐derived  mafic  magmas  (Peccerillo  &   Dona9,  2003  and  references  therein).  Only   the   acid  rocks  of   Roccastrada,   show  high  and  not   very   variable  87Sr/86Sr   ra9o  (about   0.718   –  

0.720)  and  low  143Nd/144Nd  ra9o  (about  0.51222),  peralluminous  minerals  (e.g.,   cordierite)  

and  absence  of  mafic  enclaves.  These  data  suggest  for  Roccastrada  rhyolites  a  genesis  from   only   con9nental  crustal   materials  by   par9al  fusion   of   probably   metapelites  (Peccerillo   &   Dona9,  2003  and  references  therein).  The  geochemical  models  on  the  mel9ng  of  gneiss  with   similar  composi9ons  to  rocks  in  the  Tuscan  metamorphic  basement  can  explain  the  genesis   of  the  anatec9c  melt  (Fig.  5).

The  mafic  rocks  with  MgO  >  4  wt%  form  small  plutonic  bodies,  lava  flows  and  enclaves  in   felsic   rocks.   The  high   values  of   Ni,   Cr   and  Mg#   with   the  presence,   in  some  outcrops,   of   ultramafic   xenoliths   point   to   a   mantle-­‐derived   magmas.   The   TMP   mafic   rocks   are   characterized   by   a   highly   variable   geochemical   and   isotopic   composi9on   that   indicates   strong  heterogeneity  in  the  mantle  sources  (Peccerillo  &  Dona9,  2003).  These  rocks  iden9fy   a  con9nuous  trend  between  potassic  rocks  with  lamproi9c  affinity,  ultrapotassic  calcalkaline   and   shoshoni9c   rocks.   Lamproi9c   rocks   have   been   found   in   Monteca9ni   Val   di   Cecina,   Orcia9co,  Torre  Alfina  and  Sisco.  The  lamproi9c  magma  are  characterized  by  low  CaO,  Al2O3  

and  Na2O  and  high  K2O.  Other  important  characteris9cs  are  the  rela9vely  high  SiO2  content  

with   silica   oversatura9on   and   the   geochemical   fingerprint   with   typical  values   of   crustal   materials  rather   than  mantle  ones.  Capraia  and  Radicofani  show  the  lowest  concentra9ons   of   incompa9ble  elements  but   the  extreme  value  of   the  87Sr/86Sr   (Capraia,   0.708   -­‐  0.709;  

Radicofani,  0.713  -­‐  0.716).  These  data  suggest  a  genesis  by  a  metasoma9zed  mantle  source   rocks   due   to   contribu9on   of   upper   crust   materials   (subduc9on).   Experimental   studies   suggest   origin  by   mel9ng  of  superficial  mantle  perido9tes  depleted  in  clinopyroxene  (e.g.,   residual  harzburgite)  and  enriched  in  a  K-­‐rich  phase,  such  as  phlogopite  (Peccerillo  &  Dona9,   2003  and  references  therein).

(9)

Fig.  5:  IniLal  143Nd/144Nd  vs  87Sr/86Sr  plot  for  Tuscan  MagmaLc  Province  samples

(modified  aVer  Dini  et  al.,  2002).

Calcalkaline   and   shoshoni9c   rocks   show   lower   enrichment   in   K2O   and   incompa9ble  

elements  and   higher   amounts  of   CaO,   Na2O   and  Al2O3   than  lamproi9c   but   the  trends  of  

incompa9ble  elements  are  similar.  Also,  for  these  rocks  has  been  hypothized  par9al  mel9ng   of   mantle   metasoma9zed   rocks   with   probably   lherzoli9c   composi9on.   In   this   case   the   metasoma9sm  was  less  intense.

The  petrogenesis  of  the  TMP  rocks  can  be  divided  into  three  main  stages:

1. Subduc9on  of  upper  crust  with  different  degree  of  metasoma9c  processes.   These  processes  yielded  a  highly   heterogeneous  and  anomalous  mantle  with   geochemical  fingerprint  similar  to  the  upper  crust;

2. Mafic  magma  genesis  (calcalkalinic,  shoshoni9c  and  lamproi9c)  from  par9al   mel9ng   of   heterogeneous   mantle   with   geochemical   and   isotopic   crustal   signature;

3. Injec9on  of  mafic  magmas  in  the  con9nental  crust  with  crustal  anatexis  and   mixing  between  felsic  and  mafic  magmas.

The  9me  when  the  metasoma9c  processes  developed  is  s9ll  debated.   Different  authors   aQribute  such   processes  to   the  last   subduc9on   during   the   Apennines  orogenesis  further   authors  hypothised  Hercynian  or  older  event.  Isotopic  data  and  the  strong  crustal  signature   of  mafic  magmas  indicate  the  Appennines  event  more  probable  (Peccerillo  &  Dona9,  2003).

(10)

2.4.  Campiglia  MariDma  area

Campiglia  Mariima  area  is  located  in  the  Southern  Tuscany  at  the  centre,  both  spa9ally   and  temporally   of  the  TMP.  In  this  area  forma9ons  belonging  to  the  Ligurian,  Sub-­‐Ligurian   and  Tuscan  Domains,   as  well  as  Pliocenic  magma9c  rocks  crop  out.  Spa9ally   associated  to   the  magma9c  rocks  are  present  different  skarns  and  ore  deposits  (Fig.  6).

2.4.1.  Structural  seDng

The  Campiglia  Mariima  area  is  characterized  by   a  N-­‐S  trending  horst  bounded  by  high-­‐ angle  extensional  faults  and  strike-­‐slip  faults.  In  this  area  widely  the  carbona9c  forma9ons  of   Tuscan  Nappe  (Early  Jurassic  –  Early  Cretaceous)  crop  out  bordered  by  forma9ons  belonging   to   the   Ligurian   and   Sub-­‐Ligurian   Domains,   to   the   west   and   by   clayey   and   turbidi9c   successions  of  the  Tuscan  Nappe  (Cretaceous  -­‐  late  Oligocene)  to  the  east  (Fig.  6).

(11)

Fig.  6:  SchemaLc  geological  map  of  the  Campiglia  MapariXma  area.  Stars  indicate  the  main  ore  bodies   (modified  aVer  Da  Mommio  et  al.,  2010).  

In  the  Campiglia  Mariima  area  were  recognized  two  deforma9on  phases,  a  first  strike-­‐ slip  phase  (D1)  followed  by  a  extensional  phase  (D2)  (Acocella  et  al.,  2000).

Along  the  western  border  of  the  Campiglia  Mariima  horst  the  D1  phase  is  characterized   by  N-­‐S  right-­‐lateral  strike-­‐slip  fault  system  due  to  simple  shearing.  The  same  kinema9cs  has   also   affected   the  eastern  border   characterized   by   a  NW-­‐SE   system  of   right-­‐lateral  faults.  

(12)

These  structures  are  here  interpreted  as  P   shear   fractures  of  the  main  N-­‐S  systems  of  the   western  border.

The  same  areas  on  both  borders  were  reac9vated  during  the  D2  event  as  normal  faults   (Acocella  et   al.,   2000).   The  D2  event   also  produced  the  bedding  observed  in  the  western   border  near  the  Botro  ai  Marmi  monzogranite  outcrop.

The  wester  border  connects  the  deeper  forma9ons  of  the  Tuscan  Nappe  (Early  Jurassic  –   Early   Cretaceous)   with  the  forma9ons  of   the  overlying   Ligurian  and  sub-­‐Ligurian  Domains   while  the  Eastern  border  is  characterize  by  the  connec9on  with  the  shallower  forma9ons  of   the   Tuscan   Nappe  (Cretaceous-­‐Eocene).   In   both   cases  a  ver9cal  displacement   of   several   thousand  meters  was  es9mated  (Acocella  et  al.,  2000).

2.4.2.  Magma=c  rocks

The   magma9c   rocks   of   Campiglia   Mariima   show   high   variability   (from   intrusive   to   effusive  and  from  acid  to  mafic)  but  a  thorough  descrip9on  is  s9ll  lacking.

Botro  ai  Marmi  pluton

The  first   magma9c   event   in  the   Campiglia  Mariima  area  was  the   emplacement   of   a   monzogranite   pluton   that   crop   out   near   the   Botro   ai  Marmi  valley   with   a  K/Ar   age   of   5.7±0.16  Ma  (Borsi  et  al.,  1967).  The  Botro  ai  Marmi  pluton  emplaced  in  Rhae9an  plauorm   carbonates  (Calcare  Re9co  Fm.,  Tuscan  Nappe)  and  the  morphology  of  the  pluton  roof  is  N-­‐S   elongated   as   indicated   by   explora9on   wells   (Stella,   1955;   internal   mining   report)   and   geophysical  data  (Aquater,  1994).   The  pluton  produced  a  N-­‐S  elongated  contact  aureole  in   the   carbonate   host   rock   forma9ons   of   the   Tuscan   Nappe   (Calcare   Re9co   and   Calcare   Massiccio,  Upper  Triassic  –  Lower  Jurassic)  with  an  extension  of  about  5  km  length,  1.5  km   width  and  300  m  thickness  (Rodolico,  1931;  Giannini,  1955).  The  folia9on  forms  a  NE-­‐SW  to   N-­‐S  trending  an9formal  structure  that  culminates  at  Botro  ai  Marmi  valley.  Also  the  strata  in   the  carbona9c   rocks  systema9cally  plunge  outward  with  respect  to  the  main  axial  folia9on   an9cline.  Secondary  an9cline  and  syncline  folia9on  in  the  marble  were  observed.  The  shape   of   the  contact   aureole  is  interpreted  as  another  evidence  of   N-­‐S  elonga9on  of   the  buried   plutonic  body  (Acocella  et  al.,  2000;  Rossei  et  al.,  2000).  

The  primary   paragenesis  of  Botro  ai  Marmi  monzogranite  consist   of   quartz,  K-­‐feldspar,   plagioclase,   bio9te   with   accessory   minerals   9tanite,   apa9te,   zircon   and,   tourmaline.   However,  such  assemblages  are  rarely  preserved  (Rodolico,  1945;  Barberi  et  al.,  1967)  due  to   an  intense  hydrothermal  altera9on.  The  hydrothermal  altera9on  produced  a  rock  with  very   high  K2O  (up  to  10  wt%)  and  low  Ca,  Fe  and  S.  Mineralogically,  the  K-­‐altera9on  is  tes9fied  by  

(13)

secondary   K-­‐feldspar   aler   plagioclase   while   phlogopite   replaced   bio9te   (LaQanzi   et   al.,   2001).  The  contact  with  the  host-­‐rock  is  characterized  by  metasoma9c  rocks  (Barberi  et  al.,   1967).  

Campiglia  MariDma  porphyri=c  rocks

The   Campiglia   Mariima   porphyri9c   rocks   crop   out   discon9nuously   for   about   8   km   between  Campiglia  Mariima  and  Castagneto  Carducci  (Giannini,  1955;  Barberi  et  al.,  1967;   Fig.  6).

The  Campiglia  Mariima  porphyri9c  rocks  are  s9ll  poorly   studied  and  different  authors   describe  2   or   3   different   types.   In  this  frame  of  this  study   we  tried  to  clarify   some  field,   petrographic,  chemical  and  isotopic  features  (chapters  6  and  7).

Mafic  porphyry

The  mafic  porphyry   is  also  known  with  the  name  of  “porfido  augi9co”  (Rodolico,  1931;   Giannini,   1955;   Bertolani,   1958),   “porfido   augi9co-­‐quarzifero”   (Stella,   1955),   “porfido   monzoni9co   femico”   (Barberi  et   al.,   1967)   and/or   “porfido   verde”   (miners;   Corsini  et   al.,   1980).  This  rock  is  strictly  spa9ally  associated  to  the  skarn  bodies  exploited  in  the  Temperino   mine  (Barberi  et  al.,  1967;  Corsini  et  al.,  1980).  The  northern  extension  of  this  porphyry  was   encountered  during  drilling  at  depth  of  -­‐418  m  below  sea  level  (drillhole  4,  Soc.  Monteca9ni,   internal  mining  report).

The  mafic  porphyry  is  a  porphyry9c  rock  with  phenocrysts  of  plagioclase  (with  An  42  core   and  An  30-­‐34  rim),  clinopyroxene  and  bio9te  and  abundant  xenocrysts  of  sanidine  (also  up   to  5  cm)  and  quartz  in  a  fine-­‐grained  groundmass  of  pyroxene,  plagioclase  and  sanidine.  On   the   basis   of   petrographical   and   mineralogical  data   it   was  proposed   an   affinity   with   the   Monte  Amiata  la9tes  (Barberi  et  al.,  1967).

Felsic  porphyri9c  dykes

The  felsic  porphyri9c  dykes  are  also  know  with  the  name  of  “porfido  grani9co”  (Rodolico,   1931;   Giannini,   1955;   Bertolani,   1958),   “porfido   quarzifero”   (Stella,   1955),   “porfido   quarzomonzoni9co”  (Barberi  et  al.,  1967),  “porfido  alcalino-­‐potassico”  (Barberi  et  al.,  1967)   and/or  “porfido  giallo”  (miners;  Corsini  et  al.,  1980).  The  felsic  porphyries  form  two  different   dykes  from  Valle  del  Temperino  to  Valle  di  Santa  Maria.  Barberi  et  al.,  (1967)  dis9nguished   two  chemical  types  the  “porfido  alcalino-­‐potassico”   cropping  out  in  the  southern  area  and   the   “porfido   quarzomonzoni9co”   occurring   in   the   central   and   northern   area.   Recently,  

(14)

another   dyke   was   discovered   about   two   kilometers   east   of   the   Temperino   mine   near   Termine  Rosso  and  it  is  about  1   km  in  length  with  a  maximum  thickness  of  30  m  (Cerrina   Feroni,  2007).

The  felsic   dykes  are  characterized  by   phenocrysts  of  K-­‐feldspar,   plagioclase  (An  30-­‐38),   quartz,  bio9te  and  cordierite  with  mafic  inclusions.  Quartz  and  K-­‐feldspar  occur  also  in    the   groundmass.   The  primary   paragenesis  has  been  strongly   obliterated  by   late  hydrothermal   processes  that  have  produced  an  intense  K-­‐altera9on  with  sericite,   “chlorite”  and  adularia   aler   plagioclase,   cordierite  and  mafic   phases.   In  some  cases,  an  epidosite  zone  is  usually   present   at   the   contact   with   the   skarn   (e.g.,   Loi,   1900;   Corsini   et   al.,   1980).   Few   hydrothermal  breccia  bodies  were  observed  spa9ally  associated  to  the  western  dyke  (Cava   Bianca,  internal  road  limestone  quarry  near  Rocca  San  Silvestro,  Benvenu9  et  al.,  2004).

The  age  of  4.30  ±  0.13  Ma  (whole  rock  K-­‐Ar  da9ng)  was  determined  by  Borsi  et  al.,  (1967)   on  one  sample  collected  near  the  entrance  of  the  Temperino  mine  (sample  C16  of  Barberi  et   al.,  1967).  This  sample  shows  high  K2O  content  (10.48  wt%)  and  for  this  reason  the  measured  

age  was  considered  the  lower  limit  for  the  metasoma9sm  (Barberi  et  al.,  1967). San  Vincenzo  rhyolites

The  San  Vincenzo  rhyolites  cover  an  area  of  about  10  km2   from  Valle  delle  Rozze  to  the  

sud,   to  Torre  di  Donora9co  to  the  north  and  they   are  the  most  studied  magma9c  rocks  of   the  Campiglia  Mariima  area.  The  San  Vincenzo  rhyolites  are  lavas  extruded  onto  Ligurian   Domain  rocks  (Feldstein  et  al.,  1994;  Fig.  6).

The  rhyolites  are  porphyri9c  rocks  with  phenocrysts  of  quartz,  alkali  feldspar,  plagioclase   and  bio9te  with  lesser   amount   of   cordierite.   The  groundmass  phases  include  plagioclase,   bio9te   with   accessory   minerals   apa9te,   monazite,   zircon,   ilmenite,   and   epidote.   Some   samples  show  mafic  inclusion  (Feldstein  et  al.,  1994).

Several  authors  described  two  different  groups  characterized  by   different  mineralogical,   chemical  and  isotopic  composi9on  (Giraud  et  al.,  1986;  Ferrara  et  al.,  1989;  Pinarelli  et  al.,   1989;   Feldstein  et  al.,  1994).  Perugini  &  Poli,  (2003)  summarized  the  characteris9cs  of  the   two  groups  with  the  name  of  NMG  (not  mixed  group)  and  MG  (mixed  group)  and  show  that   these  groups  crop  out  in  NNE  and  SSW  zones,  respec9vely.  The  difference  between  the  two   groups  are  ascribed  to  the  magma9c  history  with  the  interac9on  between  a  mantle-­‐derived   melt   (similar   to   the   K-­‐andesite   of   Capraia   Island)   with   a   felsic   anatec9c   magma.   The   anactec9c  melt  is  similar  to  the  product  of  par9al  mel9ng  (40%)  at  0.4-­‐0.6  GPa  of  a  Paleozoic   garnet   micaschist.   The   NMG   represent   the   anatec9c   end-­‐member   while   the   MG   is   the   product  of  the  interac9on  between  the  two  melts.

(15)

Mafic   magma  batches   supplied   the   magma   chamber   filled   with   pure   anatec9c   melt.   During  this  period  a  zoned  magma  chamber  developed  with  an  upper  zone  of  felsic  anatec9c   magma   and   a   lower   with   the   mixing   of   the   anatec9c   and   mantle-­‐derived   melts.   The   erup9ons  triggered  by  mafic  batches  produced  first  the  emplacement  of  the  NMG  group  in   the  NNE  part  followed  by  the  MG  group  in  the  SSE  part  (Perugini  &  Poli,  2003).

The  age  determina9on  of  San  Vincenzo  rhyolites  is  the  topic  of  several  works  that  used   different   analy9cal  methods  as  K/Ar   on   bio9te  (Borsi  et   al.,   1967),   fission  track   on  glass   (Bigazzi  &   Ferrara,  1971;  Arias  et   al.,  1981),  and  Rb/Sr  on  bio9te  (Ferrara  et  al.,  1977).  The   age   of   4.38   ±   0.04   Ma   was  determined   with  40Ar/39Ar   geochronology   on   alkali  feldspar  

(Feldstein  et  al.,  1994).

2.4.3.  Metasoma=c  bodies  and  ore  deposits

Campiglia  Mariima  area  is  characterized  by   different   typologies  of  metasoma9c   rocks   and  ore  bodies.   These  rocks  can  be  grouped  in  three  units:   Campiglia  Mariima  Fe-­‐Cu-­‐Zn-­‐ Pb(-­‐Ag)  skarn  deposits,  Botro  ai  Marmi  metasoma9c  rocks,  Monte  Valerio  Sn-­‐W-­‐As  ores  (Fig.   6).

Campiglia  MariDma  Fe-­‐Cu-­‐Zn-­‐Pb(-­‐Ag)  skarn  bodies

Campiglia  Mariima  skarn  bodies  crop  out  over  an  area  of  about  12  km2  (Fig.  6).  All  skarn  

bodies   are   hosted   in   white   marble   derived   from   the   thermometamorphism   of   Calcare   Massiccio  Fm.  (Tuscan  Nappe)  due  to  Botro  ai  Marmi  pluton  emplacement  (e.g.,   Rodolico,   1931;   Acocella  et   al.,  2000).  The  most  common  occurrences  are  represented  by  Zn-­‐Pb(-­‐Ag)   skarn  bodies.  In  the  southern  part,  two  peculiar  Cu-­‐Zn-­‐Pb(-­‐Ag)  skarn  bodies  crop  out  (Earle   and  Le  Marchand),  represen9ng  the  largest   ores  in  the  area,  exploited  in  the  past   by   the   Temperino   mine.   The   Campiglia   Mariima   Fe-­‐Cu-­‐Zn-­‐Pb(-­‐Ag)   skarn   consists  essen9ally   of   clinopyroxene  (hedenbergite  and   minor   johannsenite)   and  ilvaite  with  very   minor   garnet   (Corsini   et   al.,   1980).   Mn-­‐pyroxenoids   are   rela9vely   scarce   (Capitani   et   al.,   2003).   Ore   mineral  assemblages  are  dominated   by   sphalerite,   galena,   chalcopyrite,   pyrrho9te,   pyrite   and   magne9te   and  were  ac9vely   exploited   for   Cu,   Pb,   Zn,   and   Ag   un9l  1979.   Campiglia   Mariima  skarn  deposit   has  been  considered  as  a  classical  example  of  exoskarn  (e.g.,  Dill,   2010)  in  which  a  “normal”  magma9c-­‐hydrothermal  sequence  of  events  were  described  (e.g.,   Rodolico,  1931;  Corsini  et  al.,  1980;  Fig.  7)  similar  to  many  skarn  deposits  in  the  world  (for  a   review  see  Meinert  et  al.,  2005).

(16)

Fig.  7:  SchemaLc  cross-­‐secLon  of  the  Temperino  mine  (modified  aVer  Corsini  et  al.,  1980) Botro  ai  Marmi  metasoma=c  rocks

The   Botro   ai   Marmi   metasoma9c   rocks   occurs   about   one   kilometer   west   of   the   Temperino   mine   in   the   contact   area   between   Botro   ai   Marmi   pluton   and   Rhae9an   carbonates  (Calcare  Re9co  Fm.,   Tuscan  Nappe).  Furthermore,  these  rocks  were  crossed  by   several  drillholes  also  in  the   southern   area  always  close  to  the  contact   with   the  pluton.   Endoskarn  veins  crosscut  the  pluton  and  they  are  connected  with  largest  masses  of  exoskarn   (up  to  8-­‐10  meters  of  thickness;  Barberi  et  al.,  1967).  The  main  primary  phases  are  diopside,   scapolite,  vesuvianite,  garnet,  wollastonite,  and  tremolite  associated  to  sulfides  (e.g.,  galena,   sphalerite,   pyrite,   arsenopyrite,   bismuthinite),   tungstates   (scheelite)   and   oxides   (e.g.,   cassiterite)  (Biagioni  et  al.,  2013  and  references  therein).

Monte  Valerio  Sn-­‐W-­‐As  ores

The  Monte  Valerio  ore  deposit   contains  cassiterite,   pyrite,   scheelite,   arsenopyrite  and   bismuthinite,  and  it  is  part  of  a  Sn-­‐W-­‐As-­‐Bi  belt  (Monte  Valerio-­‐Santa  Caterina-­‐Campo  alle   Buche)   running  along  the  western  side  of  the  buried  Botro  ai  Marmi  pluton.   In  1876   the   mining  engineer  Fréderique  Blanchard  discovered  a  high  grade  9n  deposit  that  was  exploited   for  few  years  only  due  to  its  small  overall  size.  The  oxidized  ore  discovered  by  Blanchard  was   just  the  near  surface,  expression  of  a  large,  low-­‐grade  deposit  (∼0.4  wt%  of  Sn)  and  it  was   ac9vely  exploited  un9l  1946.  Several  arseniates  were  also  discovered  within  the  oxidized  ore   por9ons  (Dini  &  Senesi,  2013  and  references  therein).

Riferimenti

Documenti correlati

[r]

i) Il campo elettrico prodotto, sia internamente che esternamente alla sfera, è radiale per la simmetria sferica del problema.. Quale sarà il valore di b affinché la forza

Abbiamo quindi che A `e insieme superiormente limitato, 0 `e un maggiorante, ma non inferiormente limitato... Verifichiamo che 1 `e l’estremo superiore di D, ovvero che non

Provare la seguenti propriet` a utilizzando i soli assiomi algebrici dei numeri reali ed eventualmente le propriet` a che la precedono.. Risolvere gli esercizi 1-4 del libro

As easy to guess, different nodes may receive dif- ferent unconfirmed transactions due to network de- lays. As this variation in arrival time allows for each potential new

(b) Usando il determinante, si verifichi la correttezza della

Dunque se mettiamo entrambi gli elettroni in uno stato con n > 1 (stati eccitati), questi non sono veri e propri stati legati dell’atomo, perché sono stati autoionizzanti, in

Questo listato matlab riporta i comandi per ottenere i grafici riportati in fondo al capitolo 8 per ottenere mediante il metodo di Ruggeri Moore la