• Non ci sono risultati.

(1)Problem 12041 (American Mathematical Monthly, Vol.125, May 2018) Proposed by R

N/A
N/A
Protected

Academic year: 2021

Condividi "(1)Problem 12041 (American Mathematical Monthly, Vol.125, May 2018) Proposed by R"

Copied!
1
0
0

Testo completo

(1)

Problem 12041

(American Mathematical Monthly, Vol.125, May 2018) Proposed by R. Stanley (USA).

For a positive integer c, let νp(c) denote the largest integer d such that pd divides c. Let

Hm=

m

Y

i=0 m

Y

j=0

i + j i

 .

For n ≥1, prove

νp(Hpn−1) = 1 2



n − 1 p −1



p2n+ pn p −1

 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. We have that

νp(Hm) =

m

X

i=0 m

X

j=0

p((i + j)!) − νp(i!) − νp(j!))

=

m

X

i=0

(i + 1)νp(i!) +

m−1

X

i=0

(m − i)νp((i + m + 1)!) − 2(m + 1)

m

X

i=0

νp(i!)

=

m

X

i=0

(m − i) (νp((i + m + 1)!) − νp(i!)) − (m + 1)

m

X

i=0

νp(i!).

Let p be a prime. Then by Legendre Theorem,

νp(N !) =X

k≥1

jN pk

k=N − sp(N ) p −1

where sp(N ) is the sum of all the digits in the expansion of N in base p.

For m = pn−1,

pn−1

X

i=0

(pn−1 − i) (νp((i + pn)!) − νp(i!)) =

n

X

k=1 pn−1

X

i=0

(pn−1 − i)

ji+ pn pk

k

− j i

pk k

=

n

X

k=1 pn−1

X

i=0

(pn−1 − i)pn−k= pn(pn−1)2 2(p − 1) .

Moreover, sincePpn−1

i=0 sp(i) = 12npn(p − 1), it follows that

pn−1

X

i=0

νp(i!) =

pn−1

X

i=0

i − sp(i)

p −1 = pn(pn−1) 2(p − 1) −npn

2 . Hence

νp(Hpn−1) =pn(pn−1)2

2(p − 1) −pn pn(pn−1) 2(p − 1) −npn

2



=1 2



n − 1 p −1



p2n+ pn p −1

 .



Riferimenti