• Non ci sono risultati.

The inequality (1) is equivalent to Fk−1Fk+2&lt

N/A
N/A
Protected

Academic year: 2021

Condividi "The inequality (1) is equivalent to Fk−1Fk+2&lt"

Copied!
1
0
0

Testo completo

(1)

Problem 12213

(American Mathematical Monthly, Vol.127, November 2020) Proposed by H. Ohtsuka (Japan).

For n ≥ 1, prove n

X

k=1

pFk

−1Fk+2≤p

Fn+1Fn+4−√ 5

where Fn is the n-th Fibonacci number.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. For n = 1 the equality holds. For n ≥ 2, we show that the strict inequality holds

n

X

k=1

pFk−1Fk+2<p

Fn+1Fn+4−√ 5.

It suffices to show that for k ≥ 2, pFk

−1Fk+2<p

Fk+1Fk+4−p

FkFk+3 (1)

then

n

X

k=1

pFk

−1Fk+2=

n

X

k=2

pFk

−1Fk+2<

n

X

k=2

p

Fk+1Fk+4−p

FkFk+3

=p

Fn+1Fn+4−p F2F5

and the given inequality follows because F0F3= 0 and F2F5= 5.

The inequality (1) is equivalent to

Fk−1Fk+2< Fk+1Fk+4+ FkFk+3− 2p

FkFk+1Fk+3Fk+4 that is

2p

FkFk+1Fk+3Fk+4< Fk+1Fk+4+ FkFk+3− Fk−1Fk+2

= (Fk+2− Fk)(Fk+2+ Fk+3) + FkFk+3− Fk−1Fk+2

= Fk+2(Fk+2+ Fk+3− Fk− Fk−1) = 2Fk+22 . Hence it remains to show that

FkFk+1Fk+3Fk+4< Fk+24

which holds, because by Cassini’s identity FnrFn+r = Fn2− (−1)nrFr2, FkFk+1Fk+3Fk+4= (FkFk+4)(Fk+1Fk+3)

= (Fk+22 − (−1)k)(Fk+22 + (−1)k)

= Fk+24 − 1 < Fk+24 .



Riferimenti

Documenti correlati

Per ogni esercizio si deve presentare lo svolgimento su un foglio a parte e riportare nel riquadro, su questo foglio, solo il risultato

Siccome la derivata complessa di tan(z) in 0 vale 1 la funzione tan(z) `e invertibile, con inversa olomorfa, in un intorno di 0... La derivata olomorfa

[r]

[r]

[r]

Posizione verticale della ruota

FopKCB ~GKCG-B @“j?@kB L@GuDFGI I GuRMSACKCBPopB GuDFGIU=0GKCB LFDFL+DFB!oS... KCG&opL@-ACB

[r]