• Non ci sono risultati.

Programma del corso di TEORIA DEI GRUPPI

N/A
N/A
Protected

Academic year: 2021

Condividi "Programma del corso di TEORIA DEI GRUPPI"

Copied!
4
0
0

Testo completo

(1)

Programma del corso di TEORIA DEI GRUPPI

tenuto dalla Prof. Mercede MAJ nell'anno accademico 2011/2012

Richiami, prime definizioni e risultati

Gruppi. Esempi. Gruppo simmetrico di grado n. Gruppi di matrici. Gruppi di simmetrie, gruppi diedrali. Sottogruppi. Sottogruppo generato da una parte. Sottogruppo di Frattini e sua caratterizzazione come insieme dei non generatori.. Prodotto di sottogruppi. Identita’ di Dedekind. Laterali sinistri e laterali destri. Trasversali sinistri e trasversali destri. Indice di un sottogruppo. Proprieta’ dell’indice. Teorema di Poincare’. Teorema di Lagrange. Sottogruppi normali e gruppo quoziente. Derivato di un gruppo.

Coniugio tra elementi di un gruppo, centro di un gruppo. Centralizzante di un sottoinsieme, equazione delle classi. Nocciolo e chiusura normale di un

sottogruppo. Coniugio tra sottogruppi di un gruppo. Normalizzante di un sottogruppo.

Gruppi ciclici. Ordine di un elemento. Gruppi periodici, aperiodici, misti. p-gruppi, p-gruppi abeliani elementari, p-sottogruppi di Sylow di un gruppo.

Omomorfismi e teoremi di omomorfismo. Automorfo di un gruppo. Esempi. Automorfo interno di un gruppo e suo isomorfismo con G/Z(G).

Sottogruppi caratteristici e pienamente invarianti. Esempi. Prodotti diretti e prodotti semidiretti. Esempi.

Gruppi di permutazione. Permutazioni, cicli, decomposizione di una permutazione in prodotto di cicli . Struttura ciclica di una permutazione. Ordine di un ciclo e di

(2)

una permutazione. Permutazioni coniugate. Permutazioni pari e permutazioni

dispari. Gruppo alterno di grado n. Sottogruppi e sottogruppi normali del gruppo

simmetrico e del gruppo alterno di grado 3 e 4. Teorema di Galois sulla semplicita’ del gruppo alterno di grado n, per n> 5.

Azione di un gruppo su di un insieme

Definizione di azione e di rappresentazione di permutazioni. Esempi e legame tra i due concetti. Orbite e stabilizzanti. Lagame tra la cardinalita’ dell’orbita di un elemento e l’indice del suo stabilizzante. Esempi. Applicazioni.

Il teorema di Sylow. Applicazioni del Teorema di Sylow. Gruppi di ordine pq. Argomento di Frattini-Capelli.

Sulla struttura di un gruppo

Serie di un gruppo, raffinamenti, serie di composizione, fattori di composizione. Lemma di Zassenhaus, Teorema di Schreier. Teorema di Jordan-Holder.

Gruppi abeliani

Struttura dei gruppi abeliani finiti. Gruppi abeliani liberi. Gruppi abeliani proiettivi. Struttura dei gruppi abeliani finitamente generabili. Gruppi abeliani divisibili. Gruppi abeliani iniettivi. Struttura dei gruppi abeliani divisibili.

Gruppi risolubili

Definizione di gruppo risolubile. Esempi. Serie derivata. Caratterizzazione della risolubilita’ in termini di serie derivata. Sottogruppi e quozienti di un gruppo

risolubile. Risolubilita’ dei gruppi di ordine pq, p2q, p2q2. Enunciato del Teorema di Burnside e del Teorema di Feit-Thompson.

(3)

Gruppi nilpotenti

Definizione di gruppo nilpotente. Esempi. Serie centrale superiore . Serie centrale inferiore (dim facoltativa). Caratterizzazione della nilpotenza in termini della serie centrale superiore. Caratterizzazione della nilpotenza in termini della serie centrale inferiore (dim facoltativa). Sottogruppi e quozienti di un gruppo nilpotente,

prodotto diretto di due gruppi nilpotenti. Proprieta’ dei gruppi nilpotenti.

Caratterizzazioni dei gruppi nilpotenti finiti. Teorema di Fitting (dim facoltativa). Gruppi supersolubili (dim facoltative).

Testi consigliati

M. CURZIO, P. LONGOBARDI, M. MAJ Lezioni di Algebra, Liguori 1996

J. F. HUMPHREYS A Course in Group Theory, Oxford University Press, 2001

D.J.S. ROBINSON An Introduction to Abstract Algebra , de Gruyter, 2003

D.J.S. ROBINSON A Course in the Theory of Groups, Springer Verlag, 1996

(4)

Riferimenti

Documenti correlati

Il corso consentirà allo studente di acquisire una conoscenza della struttura e delle dinamiche di gruppo, secondo il modello psicodinamico, e dei principi che guidano la

Criteri per la convergenza delle serie a termini non negativi Teorema 7.11 Criterio del confronto.. Teorema 7.12 Criterio

Mostrare che un gruppo di ordine 28 ha un sottogruppo normale di

Un p-gruppo abeliano finito è prodotto di gruppi ciclici: inizio del Lemma sull’elemento di ordine massimo..

Azione sulle classi laterali: se il gruppo G ha un sottogruppo di indice n, allora G ha un sottogruppo normale di indice un multiplo di n e un divisore di

(1) Mostrate che ogni p-gruppo abeliano finito è prodotto diretto di gruppi ciclici.. (2) Mostrate che ogni gruppo abeliano finito è prodotto diretto di

(2) come gruppo di funzioni su Z/nZ, e dunque come prodotto semidiretto interno..

(2) Si mostri con un esmepio che non tutti i gruppi hanno una base.. (3) Si definisca un gruppo libero F su un