• Non ci sono risultati.

X n=1 1 an+1− an

N/A
N/A
Protected

Academic year: 2021

Condividi "X n=1 1 an+1− an"

Copied!
1
0
0

Testo completo

(1)

Problem 12004

(American Mathematical Monthly, Vol.124, October 2017) Proposed by M. Omarjee (France).

Let{an}n≥1 be a strictly increasing sequence of real numbers such that an≤ n2ln(n) for all n ≥ 1.

Prove that the series

X

n=1

1 an+1− an diverges.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Assume on the contrary that the series (with positive terms) is convergent.

Then (note that a1≤ 12ln(1) ≤ 0)

X

n=1

1 an+1− an

=

X

k=1

2k−1

X

n=2k−1

1 an+1− an

<+∞ =

X

k=1

1 4(ln(2)k −a41k)

which implies that there exists a positive integer k such that

2k−1

X

n=2k−1

1

an+1− an < 1 4(ln(2)k −a4k1). Moreover, by Cauchy-Schwarz inequality,

2k−1

X

n=2k−1

1 an+1− an

·

2k−1

X

n=2k−1

(an+1− an)

≥

2k−1

X

n=2k−1

1

2

= (2k− 2k−1)2= 4k−1.

Therefore 1

4(ln(2)k −a4k1)>

2k−1

X

n=2k−1

1

an+1− an ≥ 4k−1 P2k−1

n=2k−1(an+1− an)= 4k−1 a2k− a2k−1

≥ 4k−1 a2k− a1

,

that is

a2k− a1>4k

ln(2)k −a1

4k

= 4kln(2k) − a1 =⇒ a2k >(2k)2ln(2k)

which contradicts the given inequality an≤ n2ln(n) for n = 2k. 

Riferimenti