• Non ci sono risultati.

zn, show that Xn k=1 1 zk Yn j=1 j6=k 1 zk− zj = (−1)n+1 z1z2

N/A
N/A
Protected

Academic year: 2021

Condividi "zn, show that Xn k=1 1 zk Yn j=1 j6=k 1 zk− zj = (−1)n+1 z1z2"

Copied!
1
0
0

Testo completo

(1)

Problem 10697

(American Mathematical Monthly, Vol.105, December 1998) Proposed by J. L. Diaz-Barrero (Spain).

Given n distinct nonzero complex numbers z1, z2, . . . , zn, show that Xn

k=1

1 zk

Yn j=1 j6=k

1 zk− zj

= (−1)n+1 z1z2· · · zn

.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Firenze, viale Morgagni 67/A, 50134 Firenze, Italy.

The polynomial

P(z) = Xn k=1

Yn j=1 j6=k

z − zj

zk− zj

− 1,

whose degree is less than n, has at least n distinct roots, i.e. P (zi) = 0 for i = 1, 2 . . . , n. Therefore, by the Fundamental Theorem of Algebra, the polynomial P is identically zero. Thus

1 = 1 + P (0) = Xn k=1

Yn j=1 j6=k

−zj zk− zj

= (−1)n−1z1z2· · · zn· Xn k=1

1 zk

Yn j=1 j6=k

1 zk− zj

and we easily find our identity after dividing both sides of the equality by the nonzero complex

number (−1)n−1z1z2· · · zn. 

Riferimenti