• Non ci sono risultati.

Asymptotic Development by Gamma Convergence

N/A
N/A
Protected

Academic year: 2021

Condividi "Asymptotic Development by Gamma Convergence"

Copied!
120
0
0

Testo completo

(1)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Asymptotic Development by Gamma Convergence

Gianni Dal Maso’s 65th birthday

Giovanni Leoni

Carnegie Mellon University

January 27, 2020

(2)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

CMU, October 2002

(3)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

CMU, Workshop 2003

(4)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Miami, December 2009

(5)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

CMU, May 2016

(6)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

2-quasiconvexity. Dal Maso, Fonseca, G. L., & Morini, ARMA, 2004;

Image restoration. Dal Maso, Fonseca, G. L., & Morini, SIMA, 2009;

Counterexample integral representation. Dal Maso, Fonseca,

& G. L., Adv. Calc. Var., 2010;

Singularly perturbed problems. Chermisi, Dal Maso, Fonseca,

& G. L., Indiana Univ. Math. J, 2011;

Singular parabolic equations, Hilbert transform. Dal Maso, Fonseca, & G. L., ARMA, 2014;

Second order Gamma convergence. Dal Maso, Fonseca, & G.

L., Calc. Var. Partial Di¤erential Equations, 2015;

Nonlocal functionals. Dal Maso, Fonseca, & G. L., Trans.

Amer. Math. Soc., 2018;

Minimizing movements, elliptic systems in domains with

corners. Dal Maso, Fonseca, & G. L., in preparation.

(7)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Outline of the Talk:

Gamma-Asymptotic Development of Order k

Singularly perturbed Neumann-Robin boundary problems

G.Gravina and G. L., 2019, SIAM J. Math. Anal.,

Asymptotic development of order 2 for Cahn–Hilliard functional

G.L. and R. Murray, 2016, ARMA, & 2019, Proc. Amer. Math. Soc.

G. Dal Maso, I. Fonseca and G.L., 2015, Calc. Var. Partial

Di¤erential Equations.

(8)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Outline of the Talk:

Gamma-Asymptotic Development of Order k

Singularly perturbed Neumann-Robin boundary problems

G.Gravina and G. L., 2019, SIAM J. Math. Anal., Asymptotic development of order 2 for Cahn–Hilliard functional

G.L. and R. Murray, 2016, ARMA, & 2019, Proc. Amer. Math. Soc.

G. Dal Maso, I. Fonseca and G.L., 2015, Calc. Var. Partial

Di¤erential Equations.

(9)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Outline of the Talk:

Gamma-Asymptotic Development of Order k

Singularly perturbed Neumann-Robin boundary problems G.Gravina and G. L., 2019, SIAM J. Math. Anal.,

Asymptotic development of order 2 for Cahn–Hilliard functional

G.L. and R. Murray, 2016, ARMA, & 2019, Proc. Amer. Math. Soc.

G. Dal Maso, I. Fonseca and G.L., 2015, Calc. Var. Partial

Di¤erential Equations.

(10)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Outline of the Talk:

Gamma-Asymptotic Development of Order k

Singularly perturbed Neumann-Robin boundary problems G.Gravina and G. L., 2019, SIAM J. Math. Anal., Asymptotic development of order 2 for Cahn–Hilliard functional

G.L. and R. Murray, 2016, ARMA, & 2019, Proc. Amer. Math. Soc.

G. Dal Maso, I. Fonseca and G.L., 2015, Calc. Var. Partial

Di¤erential Equations.

(11)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Outline of the Talk:

Gamma-Asymptotic Development of Order k

Singularly perturbed Neumann-Robin boundary problems G.Gravina and G. L., 2019, SIAM J. Math. Anal., Asymptotic development of order 2 for Cahn–Hilliard functional

G.L. and R. Murray, 2016, ARMA, & 2019, Proc. Amer.

Math. Soc.

G. Dal Maso, I. Fonseca and G.L., 2015, Calc. Var. Partial

Di¤erential Equations.

(12)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Outline of the Talk:

Gamma-Asymptotic Development of Order k

Singularly perturbed Neumann-Robin boundary problems G.Gravina and G. L., 2019, SIAM J. Math. Anal., Asymptotic development of order 2 for Cahn–Hilliard functional

G.L. and R. Murray, 2016, ARMA, & 2019, Proc. Amer.

Math. Soc.

G. Dal Maso, I. Fonseca and G.L., 2015, Calc. Var. Partial

Di¤erential Equations.

(13)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Gamma-Asymptotic Development of Order k

Gamma-Convergence

De Giorgi (1975), De Giorgi and Franzoni (1975)

De…nition

X metric space, F ε : X ! [ ∞, ∞ ] , ε > 0, Γ-converges if there exists F ( 0 ) : X ! [ ∞, ∞ ] such that

for every x 2 X and every x ε ! x, lim inf

ε ! 0

+

F ε ( x ε ) F ( 0 ) ( x ) ,

for every x 2 X there exists x ε ! x such that lim

ε ! 0

+

F ε ( x ε ) F ( 0 ) ( x )

We write F ε

! F Γ ( 0 ) .

(14)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Gamma-Asymptotic Development of Order k

Gamma-Convergence

De Giorgi (1975), De Giorgi and Franzoni (1975)

De…nition

X metric space, F ε : X ! [ ∞, ∞ ] , ε > 0, Γ-converges if there exists F ( 0 ) : X ! [ ∞, ∞ ] such that

for every x 2 X and every x ε ! x, lim inf

ε ! 0

+

F ε ( x ε ) F ( 0 ) ( x ) , for every x 2 X there exists x ε ! x such that

lim

ε ! 0

+

F ε ( x ε ) F ( 0 ) ( x ) We write F ε

! F Γ ( 0 ) .

(15)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Gamma-Asymptotic Development of Order k

Gamma-Asymptotic Developments

Anzellotti and Baldo (1993)

De…nition

X metric space, F ε : X ! ( ∞, ∞ ] has a Γ-asymptotic development of order k,

F ε ( 0 )

= F Γ ( 0 ) + ε F ( 1 ) + + ε k F ( k ) + o ( ε k ) , if there exist F ( i ) : X ! [ ∞, ∞ ] , i = 1, . . . , k, such that

F ε ( 0 )

! F Γ ( 0 ) , where F ε ( 0 ) : = F ε ,

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ε

! F Γ ( i ) for i = 1, . . . , k.

(16)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Gamma-Asymptotic Development of Order k

Gamma-Asymptotic Developments

Anzellotti and Baldo (1993)

De…nition

X metric space, F ε : X ! ( ∞, ∞ ] has a Γ-asymptotic development of order k,

F ε ( 0 )

= F Γ ( 0 ) + ε F ( 1 ) + + ε k F ( k ) + o ( ε k ) , if there exist F ( i ) : X ! [ ∞, ∞ ] , i = 1, . . . , k, such that

F ε ( 0 )

! F Γ ( 0 ) , where F ε ( 0 ) : = F ε , F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 )

ε

! F Γ ( i ) for i = 1, . . . , k.

(17)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( 0 )

= F Γ ( 0 ) + ε F ( 1 ) + + ε k F ( k ) + o ( ε k ) , F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 )

ε

! F Γ ( i ) for i = 1, . . . , k.

U i : = f minimizers of F ( i ) g

F ( i ) ∞ in X n U i 1

let ε m ! 0 + and assume that there is a minimizer x m 2 X of F ε

m

and x m ! x

f limits of minimizers of F ε

m

g U k U 0 ,

inf F ε

m

= inf F ( 0 ) + ε m inf F ( 1 ) + + ε k m inf F ( k ) + o ( ε k m ) ,

Goal/Hope …nd k so that f limits of minimizers of F ε

m

g = U k .

(18)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( 0 )

= F Γ ( 0 ) + ε F ( 1 ) + + ε k F ( k ) + o ( ε k ) , F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 )

ε

! F Γ ( i ) for i = 1, . . . , k.

U i : = f minimizers of F ( i ) g F ( i ) ∞ in X n U i 1

let ε m ! 0 + and assume that there is a minimizer x m 2 X of F ε

m

and x m ! x

f limits of minimizers of F ε

m

g U k U 0 ,

inf F ε

m

= inf F ( 0 ) + ε m inf F ( 1 ) + + ε k m inf F ( k ) + o ( ε k m ) ,

Goal/Hope …nd k so that f limits of minimizers of F ε

m

g = U k .

(19)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( 0 )

= F Γ ( 0 ) + ε F ( 1 ) + + ε k F ( k ) + o ( ε k ) , F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 )

ε

! F Γ ( i ) for i = 1, . . . , k.

U i : = f minimizers of F ( i ) g F ( i ) ∞ in X n U i 1

let ε m ! 0 + and assume that there is a minimizer x m 2 X of F ε

m

and x m ! x

f limits of minimizers of F ε

m

g U k U 0 ,

inf F ε

m

= inf F ( 0 ) + ε m inf F ( 1 ) + + ε k m inf F ( k ) + o ( ε k m ) ,

Goal/Hope …nd k so that f limits of minimizers of F ε

m

g = U k .

(20)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( 0 )

= F Γ ( 0 ) + ε F ( 1 ) + + ε k F ( k ) + o ( ε k ) , F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 )

ε

! F Γ ( i ) for i = 1, . . . , k.

U i : = f minimizers of F ( i ) g F ( i ) ∞ in X n U i 1

let ε m ! 0 + and assume that there is a minimizer x m 2 X of F ε

m

and x m ! x

f limits of minimizers of F ε

m

g U k U 0 ,

inf F ε

m

= inf F ( 0 ) + ε m inf F ( 1 ) + + ε k m inf F ( k ) + o ( ε k m ) ,

Goal/Hope …nd k so that f limits of minimizers of F ε

m

g = U k .

(21)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( 0 )

= F Γ ( 0 ) + ε F ( 1 ) + + ε k F ( k ) + o ( ε k ) , F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 )

ε

! F Γ ( i ) for i = 1, . . . , k.

U i : = f minimizers of F ( i ) g F ( i ) ∞ in X n U i 1

let ε m ! 0 + and assume that there is a minimizer x m 2 X of F ε

m

and x m ! x

f limits of minimizers of F ε

m

g U k U 0 ,

inf F ε

m

= inf F ( 0 ) + ε m inf F ( 1 ) + + ε k m inf F ( k ) + o ( ε k m ) ,

Goal/Hope …nd k so that f limits of minimizers of F ε

m

g = U k .

(22)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( 0 )

= F Γ ( 0 ) + ε F ( 1 ) + + ε k F ( k ) + o ( ε k ) , F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 )

ε

! F Γ ( i ) for i = 1, . . . , k.

U i : = f minimizers of F ( i ) g F ( i ) ∞ in X n U i 1

let ε m ! 0 + and assume that there is a minimizer x m 2 X of F ε

m

and x m ! x

f limits of minimizers of F ε

m

g U k U 0 ,

inf F ε

m

= inf F ( 0 ) + ε m inf F ( 1 ) + + ε k m inf F ( k ) + o ( ε k m ) ,

Goal/Hope …nd k so that f limits of minimizers of F ε

m

g = U k .

(23)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ε

! F Γ ( i ) for i = 1, . . . , k.

Example Let X = R and

F ε ( x ) = ε k j x j F ε ( 0 )

! F Γ ( 0 ) 0, U 0 : = f minimizers of F ( 0 ) g = R,

F ε ( i ) ( x ) = ε k i j x j , F ε ( i )

! F Γ ( i ) 0 for all i = 1, . . . , k 1, U i : = f minimizers of F ( i ) g = R,

F ε ( k ) ( x ) = j x j ,

f limits of minimizers of F ε

m

g = U k U k 1 = = U 0 .

(24)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ε

! F Γ ( i ) for i = 1, . . . , k.

Example Let X = R and

F ε ( x ) = ε k j x j F ε ( 0 )

! F Γ ( 0 ) 0, U 0 : = f minimizers of F ( 0 ) g = R, F ε ( i ) ( x ) = ε k i j x j , F ε ( i )

! F Γ ( i ) 0 for all i = 1, . . . , k 1,

U i : = f minimizers of F ( i ) g = R, F ε ( k ) ( x ) = j x j ,

f limits of minimizers of F ε

m

g = U k U k 1 = = U 0 .

(25)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ε

! F Γ ( i ) for i = 1, . . . , k.

Example Let X = R and

F ε ( x ) = ε k j x j F ε ( 0 )

! F Γ ( 0 ) 0, U 0 : = f minimizers of F ( 0 ) g = R, F ε ( i ) ( x ) = ε k i j x j , F ε ( i )

! F Γ ( i ) 0 for all i = 1, . . . , k 1, U i : = f minimizers of F ( i ) g = R,

F ε ( k ) ( x ) = j x j ,

f limits of minimizers of F ε

m

g = U k U k 1 = = U 0 .

(26)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ε

! F Γ ( i ) for i = 1, . . . , k.

Example Let X = R and

F ε ( x ) = ε k j x j F ε ( 0 )

! F Γ ( 0 ) 0, U 0 : = f minimizers of F ( 0 ) g = R, F ε ( i ) ( x ) = ε k i j x j , F ε ( i )

! F Γ ( i ) 0 for all i = 1, . . . , k 1, U i : = f minimizers of F ( i ) g = R,

F ε ( k ) ( x ) = j x j ,

f limits of minimizers of F ε

m

g = U k U k 1 = = U 0 .

(27)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ε

! F Γ ( i ) for i = 1, . . . , k.

Example Let X = R and

F ε ( x ) = ε k j x j F ε ( 0 )

! F Γ ( 0 ) 0, U 0 : = f minimizers of F ( 0 ) g = R, F ε ( i ) ( x ) = ε k i j x j , F ε ( i )

! F Γ ( i ) 0 for all i = 1, . . . , k 1, U i : = f minimizers of F ( i ) g = R,

F ε ( k ) ( x ) = j x j ,

f limits of minimizers of F ε

m

g = U k U k 1 = = U 0 .

(28)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ε

! F Γ ( i ) for i = 1, . . . , k.

Example

Let X = [ 0, 1 ] and F ε ( x ) = ε

n j x j if x 2 ( 2 n , 2 n + 1 ] , n 2 N, 0 if x = 0.

F ε ( 0 )

! F Γ ( 0 ) 0, U 0 : = f minimizers of F ( 0 ) g = [ 0, 1 ] ,

F ε ( k ) ( x ) = ε

n k j x j if x 2 ( 2 n , 2 n + 1 ] , n 2 N,

0 if x = 0.

U k : = f minimizers of F ( k ) g = [ 0, 2 k ] ,

f limits of minimizers of F ε

m

g = T k U k .

(29)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ε

! F Γ ( i ) for i = 1, . . . , k.

Example

Let X = [ 0, 1 ] and F ε ( x ) = ε

n j x j if x 2 ( 2 n , 2 n + 1 ] , n 2 N, 0 if x = 0.

F ε ( 0 )

! F Γ ( 0 ) 0, U 0 : = f minimizers of F ( 0 ) g = [ 0, 1 ] ,

F ε ( k ) ( x ) = ε

n k j x j if x 2 ( 2 n , 2 n + 1 ] , n 2 N,

0 if x = 0.

U k : = f minimizers of F ( k ) g = [ 0, 2 k ] ,

f limits of minimizers of F ε

m

g = T k U k .

(30)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ε

! F Γ ( i ) for i = 1, . . . , k.

Example

Let X = [ 0, 1 ] and F ε ( x ) = ε

n j x j if x 2 ( 2 n , 2 n + 1 ] , n 2 N, 0 if x = 0.

F ε ( 0 )

! F Γ ( 0 ) 0, U 0 : = f minimizers of F ( 0 ) g = [ 0, 1 ] ,

F ε ( k ) ( x ) = ε

n k j x j if x 2 ( 2 n , 2 n + 1 ] , n 2 N,

0 if x = 0.

U k : = f minimizers of F ( k ) g = [ 0, 2 k ] ,

f limits of minimizers of F ε

m

g = T k U k .

(31)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ε

! F Γ ( i ) for i = 1, . . . , k.

Example Let X = R and

F ε ( x ) = e 1/ε j x j F ε ( 0 )

! F Γ ( 0 ) 0

U 0 : = f minimizers of F ( 0 ) g = R, F ε ( i ) ( x ) = e

1/ε

ε i j x j , F ε ( i )

! F Γ ( i ) 0 for all i , U i : = f minimizers of F ( i ) g = R,

f limits of minimizers of F ε

m

g = f 0 g U i = = U 0 = R

for all i

(32)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ε

! F Γ ( i ) for i = 1, . . . , k.

Example Let X = R and

F ε ( x ) = e 1/ε j x j F ε ( 0 )

! F Γ ( 0 ) 0

U 0 : = f minimizers of F ( 0 ) g = R,

F ε ( i ) ( x ) = e

1/ε

ε i j x j , F ε ( i )

! F Γ ( i ) 0 for all i , U i : = f minimizers of F ( i ) g = R,

f limits of minimizers of F ε

m

g = f 0 g U i = = U 0 = R

for all i

(33)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ε

! F Γ ( i ) for i = 1, . . . , k.

Example Let X = R and

F ε ( x ) = e 1/ε j x j F ε ( 0 )

! F Γ ( 0 ) 0

U 0 : = f minimizers of F ( 0 ) g = R, F ε ( i ) ( x ) = e

1/ε

ε i j x j , F ε ( i )

! F Γ ( i ) 0 for all i ,

U i : = f minimizers of F ( i ) g = R,

f limits of minimizers of F ε

m

g = f 0 g U i = = U 0 = R

for all i

(34)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ε

! F Γ ( i ) for i = 1, . . . , k.

Example Let X = R and

F ε ( x ) = e 1/ε j x j F ε ( 0 )

! F Γ ( 0 ) 0

U 0 : = f minimizers of F ( 0 ) g = R, F ε ( i ) ( x ) = e

1/ε

ε i j x j , F ε ( i )

! F Γ ( i ) 0 for all i , U i : = f minimizers of F ( i ) g = R,

f limits of minimizers of F ε

m

g = f 0 g U i = = U 0 = R

for all i

(35)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ε

! F Γ ( i ) for i = 1, . . . , k.

Example Let X = R and

F ε ( x ) = e 1/ε j x j F ε ( 0 )

! F Γ ( 0 ) 0

U 0 : = f minimizers of F ( 0 ) g = R, F ε ( i ) ( x ) = e

1/ε

ε i j x j , F ε ( i )

! F Γ ( i ) 0 for all i , U i : = f minimizers of F ( i ) g = R,

f limits of minimizers of F ε

m

g = f 0 g U i = = U 0 = R

for all i

(36)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

More generally, De…nition

X metric space, F ε : X ! ( ∞, ∞ ] has a Γ-asymptotic development of order k,

F ε ( 0 )

= F Γ ( 0 ) + ω 1 ( ε )F ( 1 ) + + ω k ( ε )F ( k ) + o ( ε k ) , if there exist F ( i ) : X ! [ ∞, ∞ ] , i = 1, . . . , k, such that

F ε ( 0 )

! F Γ ( 0 ) , where F ε ( 0 ) : = F ε ,

ω 0 1, ω i > 0, ω i ( ε ) ! 0, ω i ( ε ) i 1 ( ε ) ! 0 as ε ! 0 + , F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 )

ω i ( ε ) i 1 ( ε )

! F Γ ( i ) for i = 1, . . . , k.

(37)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

More generally, De…nition

X metric space, F ε : X ! ( ∞, ∞ ] has a Γ-asymptotic development of order k,

F ε ( 0 )

= F Γ ( 0 ) + ω 1 ( ε )F ( 1 ) + + ω k ( ε )F ( k ) + o ( ε k ) , if there exist F ( i ) : X ! [ ∞, ∞ ] , i = 1, . . . , k, such that

F ε ( 0 )

! F Γ ( 0 ) , where F ε ( 0 ) : = F ε ,

ω 0 1, ω i > 0, ω i ( ε ) ! 0, ω i ( ε ) i 1 ( ε ) ! 0 as ε ! 0 + ,

F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 ) ω i ( ε ) i 1 ( ε )

! F Γ ( i ) for i = 1, . . . , k.

(38)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional Gamma-Asymptotic Development of Order k

More generally, De…nition

X metric space, F ε : X ! ( ∞, ∞ ] has a Γ-asymptotic development of order k,

F ε ( 0 )

= F Γ ( 0 ) + ω 1 ( ε )F ( 1 ) + + ω k ( ε )F ( k ) + o ( ε k ) , if there exist F ( i ) : X ! [ ∞, ∞ ] , i = 1, . . . , k, such that

F ε ( 0 )

! F Γ ( 0 ) , where F ε ( 0 ) : = F ε ,

ω 0 1, ω i > 0, ω i ( ε ) ! 0, ω i ( ε ) i 1 ( ε ) ! 0 as ε ! 0 + , F ε ( i ) : = F ε ( i 1 ) inf F ( i 1 )

ω i ( ε ) i 1 ( ε )

! F Γ ( i ) for i = 1, . . . , k.

(39)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Dirichlet–Neumann Problems

8 <

:

∆u 0 = f in Ω,

ν u 0 = 0 on Γ N , u 0 = g on Γ D ,

R N open, bounded, ∂Ω Lipschitz continuous,

ν outward unit normal to ∂ Ω,

Ω = Γ N [ Γ D , Γ N \ Γ D = ∅, Γ N , Γ D relatively open, nonempty

f 2 L 2 ( ) , g 2 H 3/2 ( Ω )

(40)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Dirichlet–Neumann Problems

8 <

:

∆u 0 = f in Ω,

ν u 0 = 0 on Γ N , u 0 = g on Γ D ,

R N open, bounded, ∂Ω Lipschitz continuous, ν outward unit normal to ∂ Ω,

Ω = Γ N [ Γ D , Γ N \ Γ D = ∅, Γ N , Γ D relatively open, nonempty

f 2 L 2 ( ) , g 2 H 3/2 ( Ω )

(41)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Dirichlet–Neumann Problems

8 <

:

∆u 0 = f in Ω,

ν u 0 = 0 on Γ N , u 0 = g on Γ D ,

R N open, bounded, ∂Ω Lipschitz continuous, ν outward unit normal to ∂ Ω,

Ω = Γ N [ Γ D , Γ N \ Γ D = ∅, Γ N , Γ D relatively open, nonempty

f 2 L 2 ( ) , g 2 H 3/2 ( Ω )

(42)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Dirichlet–Neumann Problems

8 <

:

∆u 0 = f in Ω,

ν u 0 = 0 on Γ N , u 0 = g on Γ D ,

R N open, bounded, ∂Ω Lipschitz continuous, ν outward unit normal to ∂ Ω,

Ω = Γ N [ Γ D , Γ N \ Γ D = ∅, Γ N , Γ D relatively open, nonempty

f 2 L 2 ( ) , g 2 H 3/2 ( Ω )

(43)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

8 <

:

∆u 0 = f in Ω,

ν u 0 = 0 on Γ N , u 0 = g on Γ D ,

Figure: Courtesy of G. Gravina

(44)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Loss of Regularity

8 <

:

∆u 0 = 0 in Ω,

ν u 0 = 0 on Γ N , u 0 = 0 on Γ D , N = 2, Ω = R 2 + = f( x 1 , x 2 ) : x 2 > 0 g ,

Γ N = ( ∞, 0 ) f 0 g , Γ D = ( 0, ∞ ) f 0 g , in polar coordinates

u 0 ( r , θ ) = r 1/2 sin ( θ/2 ) ,

u 0 2 / H 2 ( Ω \ B (( 0, 0 ) , r )) for every r > 0.

(45)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Loss of Regularity

8 <

:

∆u 0 = 0 in Ω,

ν u 0 = 0 on Γ N , u 0 = 0 on Γ D , N = 2, Ω = R 2 + = f( x 1 , x 2 ) : x 2 > 0 g , Γ N = ( ∞, 0 ) f 0 g , Γ D = ( 0, ∞ ) f 0 g ,

in polar coordinates

u 0 ( r , θ ) = r 1/2 sin ( θ/2 ) ,

u 0 2 / H 2 ( Ω \ B (( 0, 0 ) , r )) for every r > 0.

(46)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Loss of Regularity

8 <

:

∆u 0 = 0 in Ω,

ν u 0 = 0 on Γ N , u 0 = 0 on Γ D , N = 2, Ω = R 2 + = f( x 1 , x 2 ) : x 2 > 0 g , Γ N = ( ∞, 0 ) f 0 g , Γ D = ( 0, ∞ ) f 0 g , in polar coordinates

u 0 ( r , θ ) = r 1/2 sin ( θ/2 ) ,

u 0 2 / H 2 ( Ω \ B (( 0, 0 ) , r )) for every r > 0.

(47)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Loss of Regularity

8 <

:

∆u 0 = 0 in Ω,

ν u 0 = 0 on Γ N , u 0 = 0 on Γ D , N = 2, Ω = R 2 + = f( x 1 , x 2 ) : x 2 > 0 g , Γ N = ( ∞, 0 ) f 0 g , Γ D = ( 0, ∞ ) f 0 g , in polar coordinates

u 0 ( r , θ ) = r 1/2 sin ( θ/2 ) ,

u 0 2 / H 2 ( Ω \ B (( 0, 0 ) , r )) for every r > 0.

(48)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Main Hypotheses

8 <

:

∆u 0 = f in Ω,

ν u 0 = 0 on Γ N , u 0 = g on Γ D ,

R 2 open, bounded, connected ∂Ω of class C 1,1 ,

Ω = Γ N [ Γ D , Γ N \ Γ D = f P 1 , P 2 g , Γ N , Γ D relatively open, nonempty,

Ω \ B ( P i , δ i ) is a segment, i = 1, 2, δ i > 0 small, ( r i , θ i ) polar coordinates at P i , , i = 1, 2,

f 2 L 2 ( Ω ) , g 2 H 3/2 ( ∂Ω ) .

(49)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Main Hypotheses

8 <

:

∆u 0 = f in Ω,

ν u 0 = 0 on Γ N , u 0 = g on Γ D ,

R 2 open, bounded, connected ∂Ω of class C 1,1 ,

Ω = Γ N [ Γ D , Γ N \ Γ D = f P 1 , P 2 g , Γ N , Γ D relatively open, nonempty,

Ω \ B ( P i , δ i ) is a segment, i = 1, 2, δ i > 0 small, ( r i , θ i ) polar coordinates at P i , , i = 1, 2,

f 2 L 2 ( Ω ) , g 2 H 3/2 ( ∂Ω ) .

(50)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Main Hypotheses

8 <

:

∆u 0 = f in Ω,

ν u 0 = 0 on Γ N , u 0 = g on Γ D ,

R 2 open, bounded, connected ∂Ω of class C 1,1 ,

Ω = Γ N [ Γ D , Γ N \ Γ D = f P 1 , P 2 g , Γ N , Γ D relatively open, nonempty,

Ω \ B ( P i , δ i ) is a segment, i = 1, 2, δ i > 0 small,

( r i , θ i ) polar coordinates at P i , , i = 1, 2,

f 2 L 2 ( Ω ) , g 2 H 3/2 ( ∂Ω ) .

(51)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Main Hypotheses

8 <

:

∆u 0 = f in Ω,

ν u 0 = 0 on Γ N , u 0 = g on Γ D ,

R 2 open, bounded, connected ∂Ω of class C 1,1 ,

Ω = Γ N [ Γ D , Γ N \ Γ D = f P 1 , P 2 g , Γ N , Γ D relatively open, nonempty,

Ω \ B ( P i , δ i ) is a segment, i = 1, 2, δ i > 0 small, ( r i , θ i ) polar coordinates at P i , , i = 1, 2,

f 2 L 2 ( Ω ) , g 2 H 3/2 ( ∂Ω ) .

(52)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Main Hypotheses

8 <

:

∆u 0 = f in Ω,

ν u 0 = 0 on Γ N , u 0 = g on Γ D ,

R 2 open, bounded, connected ∂Ω of class C 1,1 ,

Ω = Γ N [ Γ D , Γ N \ Γ D = f P 1 , P 2 g , Γ N , Γ D relatively open, nonempty,

Ω \ B ( P i , δ i ) is a segment, i = 1, 2, δ i > 0 small, ( r i , θ i ) polar coordinates at P i , , i = 1, 2,

f 2 L 2 ( Ω ) , g 2 H 3/2 ( ∂Ω ) .

(53)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

8 <

:

∆u 0 = f in Ω,

ν u 0 = 0 on Γ N , u 0 = g on Γ D , Theorem

u 0 = u reg +

∑ 2 i = 1

c i ϕ i ( r i ) r i 1/2 sin ( θ i /2 ) , u reg 2 H 2 ( Ω ) , c i 2 R, with

k u reg k H

2

( ) +

∑ 2 i = 1

j c i j c k f k L

2

( ) + c k g k H

3/2

( ) ,

ϕ i 2 C ([ 0, ∞ )) , ϕ i = 1 in [ 0, δ i /2 ] and ϕ i = 0 outside [ 0, δ i ] .

Grisvard, Kondratev, Maz’ja, Oleinik, Plamenevski¼¬, etc.

(54)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

8 <

:

∆u 0 = f in Ω,

ν u 0 = 0 on Γ N , u 0 = g on Γ D , Theorem

u 0 = u reg +

∑ 2 i = 1

c i ϕ i ( r i ) r i 1/2 sin ( θ i /2 ) , u reg 2 H 2 ( Ω ) , c i 2 R, with

k u reg k H

2

( ) +

∑ 2 i = 1

j c i j c k f k L

2

( ) + c k g k H

3/2

( ) ,

ϕ i 2 C ([ 0, ∞ )) , ϕ i = 1 in [ 0, δ i /2 ] and ϕ i = 0 outside [ 0, δ i ] .

Grisvard, Kondratev, Maz’ja, Oleinik, Plamenevski¼¬, etc.

(55)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Singularly Perturbed Neumann–Robin

Lions (73), Colli-Franzone (73, 74), Costabel & Dauge (93) 8 <

:

∆u ε = f in Ω,

ν u ε = 0 on Γ N , ε∂ ν u ε + u ε = g on Γ D . What is the advantage?

u 0 r 1/2

u ε r log r

(56)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Singularly Perturbed Neumann–Robin

Lions (73), Colli-Franzone (73, 74), Costabel & Dauge (93) 8 <

:

∆u ε = f in Ω,

ν u ε = 0 on Γ N , ε∂ ν u ε + u ε = g on Γ D . What is the advantage?

u 0 r 1/2

u ε r log r

(57)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Singularly Perturbed Neumann–Robin

Lions (73), Colli-Franzone (73, 74), Costabel & Dauge (93) 8 <

:

∆u ε = f in Ω,

ν u ε = 0 on Γ N , ε∂ ν u ε + u ε = g on Γ D . What is the advantage?

u 0 r 1/2

u ε r log r

(58)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Asymptotics

8 <

:

∆u ε = f in Ω,

ν u ε = 0 on Γ N , ε∂ ν u ε + u ε = g on Γ D . Theorem (Costabel & Dauge)

Under the main hypotheses, with f = 0, k u ε u 0 k L

2

( ) = O( ε log ε ) ,

k u ε u 0 k H

1+s

( ) = O( ε 1/2 s ) , s 2 ( 1 2 , 1 2 ) ,

k u ε u 0 k L

2

( Γ

D

) = O( ε j log ε j 1/2 ) .

(59)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Asymptotics

8 <

:

∆u ε = f in Ω,

ν u ε = 0 on Γ N , ε∂ ν u ε + u ε = g on Γ D . Theorem (Costabel & Dauge)

Under the main hypotheses, with f = 0, k u ε u 0 k L

2

( ) = O( ε log ε ) ,

k u ε u 0 k H

1+s

( ) = O( ε 1/2 s ) , s 2 ( 1 2 , 1 2 ) ,

k u ε u 0 k L

2

( Γ

D

) = O( ε j log ε j 1/2 ) .

(60)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Asymptotics

8 <

:

∆u ε = f in Ω,

ν u ε = 0 on Γ N , ε∂ ν u ε + u ε = g on Γ D . Theorem (Costabel & Dauge)

Under the main hypotheses, with f = 0, k u ε u 0 k L

2

( ) = O( ε log ε ) ,

k u ε u 0 k H

1+s

( ) = O( ε 1/2 s ) , s 2 ( 1 2 , 1 2 ) ,

k u ε u 0 k L

2

( Γ

D

) = O( ε j log ε j 1/2 ) .

(61)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Gamma Asymptotic Development

8 <

:

∆u ε = f in Ω,

ν u ε = 0 on Γ N , ε∂ ν u ε + u ε = g on Γ D .

(N-R)

Solutions u ε of (N-R) are critical points of F ε ( v ) =

Z

Ω 1

2 jr v j 2 + fv dx + 1

Z

Γ

D

( v g ) 2 ds, v 2 H 1 ( ) .

Study compactness of bounded sequences. Study Gamma asymptotic development.

Extend F ε to L 2 ( ) via F ε ( v ) : = ∞ for v 2 L 2 ( ) n H 1 ( ) .

(62)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Gamma Asymptotic Development

8 <

:

∆u ε = f in Ω,

ν u ε = 0 on Γ N , ε∂ ν u ε + u ε = g on Γ D .

(N-R)

Solutions u ε of (N-R) are critical points of F ε ( v ) =

Z

Ω 1

2 jr v j 2 + fv dx + 1

Z

Γ

D

( v g ) 2 ds, v 2 H 1 ( ) . Study compactness of bounded sequences.

Study Gamma asymptotic development.

Extend F ε to L 2 ( ) via F ε ( v ) : = ∞ for v 2 L 2 ( ) n H 1 ( ) .

(63)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Gamma Asymptotic Development

8 <

:

∆u ε = f in Ω,

ν u ε = 0 on Γ N , ε∂ ν u ε + u ε = g on Γ D .

(N-R)

Solutions u ε of (N-R) are critical points of F ε ( v ) =

Z

Ω 1

2 jr v j 2 + fv dx + 1

Z

Γ

D

( v g ) 2 ds, v 2 H 1 ( ) . Study compactness of bounded sequences.

Study Gamma asymptotic development.

Extend F ε to L 2 ( ) via F ε ( v ) : = ∞ for v 2 L 2 ( ) n H 1 ( ) .

(64)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Gamma Asymptotic Development

8 <

:

∆u ε = f in Ω,

ν u ε = 0 on Γ N , ε∂ ν u ε + u ε = g on Γ D .

(N-R)

Solutions u ε of (N-R) are critical points of F ε ( v ) =

Z

Ω 1

2 jr v j 2 + fv dx + 1

Z

Γ

D

( v g ) 2 ds, v 2 H 1 ( ) . Study compactness of bounded sequences.

Study Gamma asymptotic development.

Extend F ε to L 2 ( ) via F ε ( v ) : = ∞ for v 2 L 2 ( ) n H 1 ( ) .

(65)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Gamma Asymptotic Development of Order 0

F ε ( v ) =

Z

Ω 1

2 jr v j 2 + fv dx + 1

Z

Γ

D

( v g ) 2 ds, v 2 H 1 ( Ω ) .

Theorem (G. Gravina & G.L.)

Under the main hypotheses, F ε ! Γ F 0 in L 2 ( ) , where F 0 ( v ) =

Z

Ω 1

2 jr v j 2 + fv dx

if v 2 H 1 ( Ω ) and v = g on Γ D , F 0 ( v ) = ∞ otherwise in L 2 ( Ω ) .

min F 0 = F 0 ( u 0 ) , u 0 solution to Dirichlet–Neumann problem.

(66)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Compactness (of Order 1)

F ε ( v ) : =

Z

Ω 1

2 jr v j 2 + fv dx + 1

Z

Γ

D

( v g ) 2 ds, v 2 H 1 ( Ω ) .

Theorem (G. Gravina & G.L.)

Under the main hypotheses, let ε n ! 0 + and v n 2 H 1 ( ) be such that

sup

n

F ε

n

( v n ) F 0 ( u 0 ) + c ε n j log ε n j . Then (up to a subsequence)

v n u 0

ε 1/2 n j log ε n j 1/2 * w 0 in H 1 ( ) , v n u 0

ε n j log ε n j 1/2 * v 0 in L 2 ( Γ D ) .

(67)

Gianni Asymptotic Development Dirichlet–Neumann Problems Singularly Perturbed Problems Gamma Asymptotic Development Modica–Mortola, Cahn–Hilliard Functional

Hardy’s Inequality p=N

Compactness relies on the Hardy-type inequality Theorem (Machihara, Ozawa, & Wadade, ’12) If N = 2 and u 2 H 1 ( B ( 0, r )) , r > 0, then

Z

B ( 0,r )

u 2 ( x )

j x j 2 ( 1 + log ( r / j x j)) 2 dx

1/2 p

2 r

Z

B ( 0,r ) u 2 ( x ) dx

1/2

+ 2 ( 1 + p 2 )

Z

B ( 0,r )

x

j x j r u ( x )

2

dx

! 1/2

.

Riferimenti

Documenti correlati

Ciascuna delle due onde interagisce con il bersaglio situato in campo lontano, e scattera un'onda il cui stato di polarizzazione può essere espresso

Il supporto di livello uno può essere ottenuto configurando ogni AP della ESS con il mappatura del BSSID con gli indirizzi IP per tutti gli altri AP all'interno della ESS.

Esso, infatti, sta proprio ad indicare la dualità del fenomeno urbano nella globalizzazione odierna: da una parte, nelle mega- città dello sviluppo, si assiste al rafforzamento

Differences in the developmental process of such policy research institutes in the two countries analyzed are the obvious reflection of their divergent, yet evolving,

Una volta esplicitati i passaggi logici sottostanti all’individuazione del mercato del prodotto è necessario dare significato al concetto di mercato geografico. Con il

L’ambiguo umore di Pechino ha certamente creato un problema di attendibilità statistica in merito alle stime numeriche, altalenanti tra l,5% e il 7,5% della popolazione,

The similarity in size and number of vesicles/ μg of total proteins of OMVs ΔompA and OMVs Δ was confirmed by Nanosight analysis (Figure 3c, d ), while the elimination of

In the present study, through expression studies with ATR minigenes we demonstrated that the c.2101 A N G synonymous change promotes the skipping of the very weak exon 9 mainly