• Non ci sono risultati.

Analisi e Modelli Matematici

N/A
N/A
Protected

Academic year: 2021

Condividi "Analisi e Modelli Matematici"

Copied!
45
0
0

Testo completo

(1)

Analisi e Modelli Matematici

Lezione 1

Marzo Aprile 2014

(2)

“Dobbiamo considerare lo stato presente dell’universo come effetto del suo stato anteriore e come causa del suo stato futuro. Una intelligenza che, per un dato istante, conoscesse tutte le forze di cui è animata la natura e la situazione rispettiva di tutti gli esseri che la compongono, se per di più fosse abbastanza grande da sottoporre i dati all’analisi, [...] l’avvenire come il passato sarebbero presenti ai suoi occhi.”

Pierre-Simon, marquise de Laplace;

23 Marzo 1749 – 5 Marzo 1827)

“Essai philosophique sur les probabilités”

(3)

“Se conoscessimo esattamente le leggi della natura e la s i t u a z i o n e d e l l ' u n i v e r s o all'istante iniziale, potremmo prevedere esattamente la situazione dello stesso universo in un istante successivo.

Ma se pure accadesse che le leggi naturali non avessero più alcun segreto per noi, anche in tal caso potremmo conoscere la situazione iniziale solo approssimativamente. “

Jules Henri Poincaré (29 Aprile 1854 – 17 Luglio 1912)

“Science et Mèthode”

(4)

“Se questo ci consentisse di prevedere la s i t u a z i o n e fi n a l e c o n l a s t e s s a approssimazione non occorrerebbe di più e potremmo dire che il fenomeno è stato previsto [...]. Ma non è sempre così: può accadere che piccole differenze nelle condizioni iniziali ne producano di grandissime nei fenomeni finali. [...] La previsione diviene impossibile.”

“Science et Mèthode”

(5)

“Una causa piccolissima che sfugge alla nostra attenzione

determina un effetto considerevole che non possiamo mancare di vedere, ed allora diciamo che l'effetto

è dovuto al caso.”

“Science et Mèthode”

(6)

Modello di Malthus

P (t) ≥ 0 `e la ‘popolazione’ all’istante t ≥ 0

0 ≤ µ < 1 `e coefficiente di mortalit`a per unit` a di popolazione e di tempo λh P (t) = numero di nuovi nati

nel periodo h

µh P (t) = numero di deceduti

nel periodo h

λ ≥ 0 `e il coefficiente di fertilit`a

per unit` a di popolazione e di tempo

(7)

P (n + 1) = (1 + λ − µ)P (n), per n = 0, 1, 2, . . .

Modello di Malthus

P (t) ≥ 0 `e la ‘popolazione’ all’istante t ≥ 0

P (t + h) = P (t) + λhP (t) − µhP (t)

nuovi nati deceduti

Se studiamo l’andamento della popolazione per tempi discreti, da un istante “n” al successivo “n+1” abbiamo la seguente

Legge di Evoluzione

(8)

Modello di Malthus

� P 0 = α,

P n+1 = qP n , per n ≥ 0.

Dato iniziale

Legge di ricorrenza

E’ un “modello” altamente semplificato e irreale!

(9)

Modello di Malthus

P 0 = α, P 1 = qα,

P 2 = qqα = q 2 α, P 3 = q(q 2 α) = q 3 α,

. . .

P n = q n α.

E’ facile calcolare esplicitamente i termini della successione

(10)

Modello di Malthus

0 2 4 6 8 10

2 4 6 8 10

0 2 4 6 8 10

1 2 3 4 5

� P 1 = 4

P n+1 = 0.7 P n .

� P 1 = 0.5

P n+1 = 1.8 P n .

(11)

Modello di Malthus

0 2 4 6 8 10

2 4 6 8 10

0 2 4 6 8 10

1 2 3 4 5

n →+∞ lim P n = 0.

Se 1 < q e P 0 �= 0

n →+∞ lim P n = ∞

Se 0 < q < 1

(12)

Modello di Malthus

0 2 4 6 8 10

2 4 6 8 10

0 2 4 6 8 10

1 2 3 4 5

n→+∞

lim P

n

= 0.

Se 1 < q e P

0

�= 0

n→+∞

lim P

n

=

Se 0 < q < 1

Le singole successioni dipendono dal dato iniziale, ma il loro

andamento asintotico è largamente indipendente dal valore del dato iniziale.

(13)

Modello di Malthus modificato

� P 0 = α,

P n+1 = qP n + b.

Aggiungiamo un termine “b” maggiore o minore di zero. “b”

potrebbe rappresentare un “flusso migratorio”

in entrata o in uscita

(14)

Modello di Malthus modificato

P 0 = α, P 1 = qα + b,

P 2 = q(qα + b) + b = q 2 α + b(q + 1),

P 3 = q(q 2 α + qb + b) + b = q 3 α + b(q 2 + q + 1), . . .

P n = q n α + b(q n −1 + q n −2 + · · · + q + 1)

= q n α + b 1 − q n

1 − q .

(15)

Modello di Malthus modificato

P n = q n α + b 1 − q n 1 − q

Se 0 < q < 1 e b qualsiasi allora

n →+∞ lim P n = b

1 − q

(16)

Modello di Malthus modificato

P n = q n α + b 1 − q n 1 − q

Se 1 < q e b ≥ 0 allora lim n →+∞ P n = + ∞

Se 1 < q e b < 0 allora lim

n →+∞ P n dipende da p 0 e b

(17)

Problemi tipici

� s 0 = α,

s n+1 = f (s n ), n ≥ 0.

(18)

1) Quale è lo stato del sistema in ogni istante futuro?

Problemi tipici

E’ possibile trovare una formula chiusa

� s 0 = α,

s n+1 = f (s n ), n ≥ 0.

s n = φ(n)

che sia “soluzione”? Cioè tale che

� φ(0) = α

φ(n + 1) = f (φ(n)), per n ≥ 0.

(19)

1) Quale è lo stato del sistema in ogni istante futuro?

2) Quale è l'andamento asintotico del sistema?

Problemi tipici

� s 0 = α,

s n+1 = f (s n ), n ≥ 0.

n →+∞ lim s n Esistono cicli limite ?

Esiste?

(20)

1) Quale è lo stato del sistema in ogni istante?

2) Quale è l'andamento asintotico del sistema?

3) Se e come l'andamento del sistema dipende dal dato iniziale?

Spesso il dato iniziale è un elemento su cui è possibile intervenire.

Problemi tipici

� s 0 = α,

s n+1 = f (s n ), n ≥ 0.

Nelle situazioni concrete il dato iniziale non è conosciuto con precisione arbitraria:

possiamo ancora fare previsioni?

(21)

1) Quale è lo stato del sistema in ogni istante?

2) Quale è l'andamento asintotico del sistema?

3) Se e come l'andamento del sistema dipende dal dato iniziale?

4) Se e come l'andamento del sistema dipenda da parametri presenti nella legge di ricorrenza?

Problemi tipici

Esempio: nel modello precedente l’andamento asintotico non dipende da “b”

Nelle situazioni concrete la stessa legge fisica non è conosciuta perfettamente:

possiamo ancora fare previsioni?

(22)

Successione Logistica

� s 0 = α,

s n+1 = qs n (1 − s n ), n ≥ 0.

Il tasso di accrescimento della popolazione dipende da “fattori ambientali”

Il tasso di accrescimento “q” diminuisce e tende a zero quando la popolazione tende a “saturare” l’ambiente

0 ≤ s

n

≤ 1 rappresenta la percentuale di occupazione dell’ambiente rispetto ad un massimo consentito

q(1 − s n ) rappresenta il tasso di accrescimento: è circa “q” solo se

la popolazione è scarsa rispetto alla soglia massima

(23)

Successione Logistica

� s 0 = α,

s n+1 = qs n (1 − s n ), n ≥ 0.

Se 0 < q ≤ 1 allora lim

n →+∞ s n = 0 0 ≤ α ≤ 1

per qualsiasi

p

5 10 15 20 25 30

0.2 0.4 0.6 0.8 1.0

p

5 10 15 20 25 30

0.2 0.4 0.6 0.8 1.0

q = 0.8

(24)

Successione Logistica

� s 0 = α,

s n+1 = qs n (1 − s n ), n ≥ 0.

0 < α < 1 allora per qualsiasi

Se 1 < q ≤ 3 lim

n →+∞ s n = 1 − 1

q

q = 1.5

p

5 10 15 20 25 30

0.2 0.4 0.6 0.8 1.0

p

5 10 15 20 25 30

0.2 0.4 0.6 0.8 1.0

(25)

q = 2.5

Successione Logistica

� s 0 = α,

s n+1 = qs n (1 − s n ), n ≥ 0.

0 < α < 1 allora per qualsiasi

Se 1 < q ≤ 3 lim

n →+∞ s n = 1 − 1

q

5 10 15 20 25 30

0.2 0.4 0.6 0.8 1.0

5 10 15 20 25 30

0.2 0.4 0.6 0.8 1.0

(26)

Successione Logistica

� s 0 = α,

s n+1 = qs n (1 − s n ), n ≥ 0.

0 < α < 1 allora per qualsiasi

Se 1 < q ≤ 3 lim

n →+∞ s n = 1 − 1

q q = 2.95

10 20 30 40 50

0.2 0.4 0.6 0.8 1.0

10 20 30 40 50

0.2 0.4 0.6 0.8 1.0

(27)

Successione Logistica

� s

0

= α,

s

n+1

= qs

n

(1 − s

n

), n ≥ 0.

q = 3.2

10 20 30 40 50

0.2 0.4 0.6 0.8 1.0

10 20 30 40 50

0.2 0.4 0.6 0.8 1.0

Se la successione ha carattere oscillante per quasi tutti i dati iniziali q > 3

(28)

Successione Logistica

10 20 30 40 50

0.2 0.4 0.6 0.8 1.0

10 20 30 40 50

0.2 0.4 0.6 0.8 1.0

q = 3.42

10 20 30 40 50

0.2 0.4 0.6 0.8 1.0

10 20 30 40 50

0.2 0.4 0.6 0.8 1.0

q = 3.44

(29)

Successione Logistica

10 20 30 40 50

0.2 0.4 0.6 0.8 1.0

20 40 60 80 100

0.2 0.4 0.6 0.8 1.0

q = 3.46

20 40 60 80 100

0.2 0.4 0.6 0.8 1.0

20 40 60 80 100

0.2 0.4 0.6 0.8 1.0

q = 3.47

(30)

Successione Logistica

20 40 60 80 100

0.2 0.4 0.6 0.8 1.0

20 40 60 80 100

0.2 0.4 0.6 0.8 1.0

q = 3.55

20 40 60 80 100

0.2 0.4 0.6 0.8 1.0

20 40 60 80 100

0.2 0.4 0.6 0.8 1.0

q = 3.57

(31)

Successione Logistica

20 40 60 80 100

0.2 0.4 0.6 0.8 1.0

20 40 60 80 100

0.2 0.4 0.6 0.8 1.0

q = 3.61

s 1 = 0.6 s 1 = 0.61

20 40 60 80 100

0.2 0.4 0.6 0.8 1.0

20 40 60 80 100

0.2 0.4 0.6 0.8 1.0

s 1 = 0.61 s 1 = 0.6

q = 3.7

(32)

Considerazioni generali 1

� s 0 = α,

s n+1 = f (s n ), n ≥ 0.

Se lim

n →∞ s n = � allora

(33)

Considerazioni generali 1

� s 0 = α,

s n+1 = f (s n ), n ≥ 0.

Se lim

n →∞ s n = � allora

� = f (�)

(34)

Considerazioni generali 1

� s

0

= α,

s

n+1

= f (s

n

), n ≥ 0.

I possibili limiti vanno cercati fra i punti stazionari

� = f (�)

Questo permette di “indovinare” i possibili limiti

(35)

Considerazioni generali 1

� s

0

= α,

s

n+1

= f (s

n

), n ≥ 0.

Geometricamente i punti stazionari � = f (�) sono le intersezioni

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

f (�)

(36)

Considerazioni generali 1

� s

0

= α,

s

n+1

= f (s

n

), n ≥ 0.

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

1) Abbiamo supposto che “f” sia una funzione continua

2) Abbiamo supposto che il limite “l” sia un numero (non infinito) 3) Anche se ci fosse una sola intersezione non è detto che s

n

→ � 4) E’ sempre vero che

� = f (�),

s

0

= � implicano

s

n

= � per ogni n ≥ 0 però ...

5) Può accadere che solo per s

0

= � si abbia lim

n→+∞

s

n

= �

(37)

Considerazioni generali 2

� s

0

= α,

s

n+1

= f (s

n

), n ≥ 0.

Esistono e quali sono le caratteristiche del grafico di “f” rilevanti per l’andamento di s

n

?

0.5 1.0 1.5

0.5 1.0 1.5

s

0

Osserva che Esistono solo due punti stazionari:

� = 0, � = 1 Per qualsiasi s

0

> 0 : lim

n→∞

s

n

= 1 Solo per s

0

= 0 : lim

n→∞

s

n

= 0

(38)

Considerazioni generali 2

� s

0

= α,

s

n+1

= f (s

n

), n ≥ 0.

Esistono e quali sono le caratteristiche del grafico di “f” rilevanti per l’andamento di s

n

?

Osserva che Esistono solo due punti stazionari:

� = 0, � = 1 Per qualsiasi s

0

> 0 : lim

n→∞

s

n

= 1 Solo per s

0

= 0 : lim

n→∞

s

n

= 0

0.5 1.0 1.5

0.5 1.0 1.5

s

0

= 0.15

(39)

Considerazioni generali 2

� s

0

= α,

s

n+1

= f (s

n

), n ≥ 0.

Esistono e quali sono le caratteristiche del grafico di “f” rilevanti per l’andamento di s

n

?

Osserva che Esistono solo due punti stazionari:

� = 0, � = 1 Per qualsiasi s

0

> 0 : lim

n→∞

s

n

= 1 Solo per s

0

= 0 : lim

n→∞

s

n

= 0

0.5 1.0 1.5

0.5 1.0 1.5

s

0

= 1.4

(40)

Considerazioni generali 2

� s

0

= α,

s

n+1

= f (s

n

), n ≥ 0.

Caratteristiche del grafico di “f” rilevanti per l’andamento di s

n

?

Osserva che ancora esistono solo due

punti stazionari

� = 0, � = 1

Per qualsiasi Solo per

0.5 1.0 1.5

0.5 1.0 1.5

s

0

> 1, lim

n→∞

s

n

= + ∞ s

0

= 1, lim

n→∞

s

n

= 1

(41)

Considerazioni generali 2

� s

0

= α,

s

n+1

= f (s

n

), n ≥ 0.

Caratteristiche del grafico di “f” rilevanti per l’andamento di s

n

?

Osserva che ancora esistono solo due

punti stazionari

� = 0, � = 1

Per qualsiasi Solo per

s

0

> 1, lim

n→∞

s

n

= + ∞ s

0

= 1, lim

n→∞

s

n

= 1 Per 0 < s

0

< 1, lim

n→∞

s

n

= 0

0.5 1.0 1.5

0.5 1.0 1.5

(42)

Considerazioni generali 2

� s

0

= α,

s

n+1

= f (s

n

), n ≥ 0.

Caratteristiche del grafico di “f” rilevanti per l’andamento di s

n

0.5 1.0 1.5

0.5 1.0 1.5

0.5 1.0 1.5

0.5 1.0 1.5

(43)

0.2 0.4 0.6 0.8 0.2

0.4 0.6 0.8

Considerazioni generali 2

� s

0

= α,

s

n+1

= f (s

n

), n ≥ 0.

Caratteristiche del grafico di “f” rilevanti per l’andamento di s

n

0.5 1.0 1.5

0.5 1.0 1.5

0.5 1.0 1.5

0.5 1.0 1.5

(44)

Considerazioni generali 2

� s

0

= α,

s

n+1

= f (s

n

), n ≥ 0.

Caratteristiche del grafico di “f” rilevanti per l’andamento di s

n

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

2 4 6 8 10

0.2 0.4 0.6 0.8

s

0

= 0.65

(45)

Considerazioni generali 2

� s

0

= α,

s

n+1

= f (s

n

), n ≥ 0.

Caratteristiche del grafico di “f” rilevanti per l’andamento di s

n

0.5 1.0 1.5

0.5 1.0 1.5

2 4 6 8

0.5 1.0 1.5

s

0

= 0.95

Riferimenti

Documenti correlati

ANALISI DELLO STATO DI FATTO 59 Una volta stabiliti quali sono i modi di vibrare significativi, è la combinazione degli effetti dei singoli modi a restituirci i valori delle

Definito più correttamente volo punto-punto, questo nuovo modo di spostarsi deve parte del suo successo e della sua rapida diffusione ad Internet: grazie alla

“Se conoscessimo esattamente le leggi della natura e la situazione dell'universo all'istante iniziale, potremmo prevedere esattamente la situazione dello stesso universo

Si denota come “integrale generale” dell’equazione differenziale un’espressione analitica che al variare di un parametro fornisca tutte o.. quasi le soluzioni

Due insiemi hanno lo stesso numero di elementi (la stessa Cardinalità) se esiste una corrispondenza biunivoca fra loro. Non tutti gli insiemi infiniti hanno la

Negli &lt;&lt;Acta Eruditorum&gt;&gt; del 1696 Johann Bernoulli propose, come sfida agli altri matematici, il problema in seguito diventato famoso come problema

I concetti fondamentali che utilizza sono: la ricerca della funzione d’onda dello stato fondamentale come combinazione lineare di deter- minanti di Slater che vengono fatti

In questa lentezza che ci è stata data, ho notato che abbiamo tutto il tempo per poter fare qualcosa, come raramente ci consentiamo di fare: possiamo fare con dolcezza, senza quel