• Non ci sono risultati.

m X k=0 2k2m − k m+ n

N/A
N/A
Protected

Academic year: 2021

Condividi "m X k=0 2k2m − k m+ n"

Copied!
1
0
0

Testo completo

(1)

Problem 11274

(American Mathematical Monthly, Vol.114, February 2007)

Proposed by D. Knuth (USA).

Prove that for nonnegative integers m and n

m

X

k=0

2k2m − k m+ n



= 4m

n

X

j=1

2m + 1 m+ j

 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

m

X

k=0

2k2m − k m+ n



=

m−n

X

k=0

2k2m − k m+ n



=

m−n

X

k=0

k

X

j=0

k j



2m − k m+ n



=

m−n

X

k=0 k

X

j=0

2m − k m+ n

k j



=

m−n

X

j=0 m−n

X

k=j

2m − k m+ n

k j



=

m−n

X

j=0 m−n−j

X

k=0

2m − j − k m+ n

j + k j



=

m−n

X

j=0

 2m + 1 m+ n + j + 1



=

m+1

X

j=n+1

2m + 1 m+ j



where we used the binomial identity (see Concrete Mathematics by Graham, Knuth and Patashnik)

l−s

X

k=0

l− k s

q + k t



=l + q + 1 s+ t + 1



for s = m + n, t = q = j, and l = 2m − j. Therefore

m

X

k=0

2k2m − k m+ n

 +

n

X

j=1

2m + 1 m+ j



=

m+1

X

j=1

2m + 1 m+ j



=

2m+1

X

j=m+1

2m + 1 j



= 22m+1 2 = 4m.



Riferimenti