STUDIO DEI PROCESSI CHIMICO FISICI NEI MOTORI A COMBUSTIONE INTERNA
B. M. Vaglieco Istituto Motori – CNR Napoli, ITALY
The history
1940
2003
Studio dei fenomeni chimico fisici che avvengono nei motori a combustione interna per mezzo di tecniche ad
elevata risoluzione spaziale (< micron) e temporale (nanosecond)
Objective
Compression Ignition
Diesel Engine Gasoline Engine HCCI Engine Spark
Ignition
Homogeneous Charge Compression Ignition
Fuel injector
NO
soot
Spark plug
Flame front
NO
Hot Flame
Low temperature combustionCombustion
Studio dei fenomeni chimico fisici che avvengono nei motori a combustione interna per mezzo di tecniche ad
elevata risoluzione spaziale (< micron) e temporale (nanosecond)
Objective
Cat-DPF : 5.66”x6” SiC coated with CeO2+Pt
Engine 1: Multi cylinder diesel 1900 cm
3UV Mirror Window High
pressure radial pump
Engine 2: Single cylinder
Injection Pressure
Sensor Optical
window Common Rail
Injection Pressure
Sensor Optical
window Common Rail
Engine 3: External Chamber
1.9 liter, 4 cylinder, direct-injection diesel engine equipped with Catalyzed Soot Filter
optical d.i. equipped with a 1.9 liter engine head and multi injection system
diesel system developed "ad hoc" by modifying a real engine with an external accessible
chamber equipped with a single-hole injector centrally located
Three diesel research systems equipped with
CR injection system:
1 2 3 Engine Type 4-stroke 4-stroke
optical
4-stroke optical Cylinder 4 in line single single
Bore [cm] 8.2 8.5 10
Stroke [cm] 9.1 9.2 9.5
Displacement [cm3] 1910 522 750 Volumetric
compression ratio 17.5 17.7 22.3 Combustion chamber
volume [cm3] 21 25 21.3
Holes number 6 6 1
Cone angle of fuel jet
axis [°] 148 148
Hole diameter [mm] 155 145 145
CAT-DPF si no no
Common Rail Injection System Nozzle Microsac Single Guide
After-Treatment System
Engine
Comparison
Diagnostica ottica
•Tecniche di tipo non intrusivo
•Tecniche di tipo non intrusivo
•Elevata risoluzione spaziale e temporale
•Elevata risoluzione spaziale e temporale
Nessuna interferenza sul fenomeno
analizzato
Nessuna interferenza sul fenomeno
analizzato
Capacità di seguire fenomeni fortemente non stazionari e di operare misure “in situ”
Capacità di seguire fenomeni fortemente non stazionari e di operare misure “in situ”
Interazione luce-materia Interazione luce-materia
Informazioni qualitative e quantitative su processi transitori
Informazioni qualitative e quantitative su processi transitori
all’interno di sistemi di combustione otticamente accessibili
all’interno di sistemi di combustione otticamente accessibili
Informazioni qualitative e quantitative su processi transitori
Informazioni qualitative e quantitative su processi transitori
all’interno di sistemi di combustione otticamente accessibili
all’interno di sistemi di combustione otticamente accessibili
Spettroscopia di estinzione:
evoluzione temporale e spaziale della fase liquida e vapore del combustibile
Spettroscopia di estinzione:
evoluzione temporale e spaziale della fase liquida e vapore del combustibile
Formazione della
miscela Formazione
della miscela
Tecniche di misura
SPETTROSCOPIA DI ESTINZIONE E DI EMISSIONE DELLA LUCE DALL’U.V. AL VISIBILE
SPETTROSCOPIA DI ESTINZIONE E DI EMISSIONE DELLA LUCE DALL’U.V. AL VISIBILE
Spettroscopia di emissione per valutare la luminosità fuliggine
Spettroscopia di emissione per valutare la
luminosità fuliggine Formazione
particolato Formazione
particolato
Spettroscopia di emissione per valutare la chemiluminescenza di specie radicali
Spettroscopia di emissione per valutare la
chemiluminescenza di specie radicali Auto- accensione
Auto- accensione
LUCE
SPECTRA
MAGIC BOX
SPETTROSCOPIA DI ESTINZIONE
I(), I0() =intensità della radiazione incidente ed emergente L= cammino ottico
Ni = concentrazione molare e numerica della specie i-ma estinguente KEXT , CEXT= coefficiente e sezione d’urto di estinzione
i i exti
ext N C
I I K L
0
1 ln
Dal coefficiente di estinzione Kext nell’ipotesi di regime di Rayleigh (D<<):
si può calcolare la frazione volumetrica f=N*V del particolato
note le proprietà ottiche delle particelle (indice di rifrazione complesso m)
λ =I
0exp( K L )
I
extLegge di Lambert-Beer
6
Im
2 1
2 2
K m m
fv ext
SPETTROSCOPIA DI SCATTERING
Rappresentazione schematica del processo di
diffusione della luce
(scattering) INCIDENTELUCE
LUCE DIFFUSA
Nel regime di Rayleigh: D<<
, ,
43 m D f D
I
vUV Mirror Window High
pressure radial pump
Engine 2
Injection pressure sensor
Combustion pressure sensor
UV Mirror Window High
pressure radial pump
Injection pressure sensor Injection pressure sensor
Combustion pressure sensor
UV Mirror Window
UV Mirror UV Mirror Window Window High
pressure radial pump
Engine
direct injection
Common Rail diesel research engine
Injection system Common Rail System Injector type Solenoid driven
Nozzle Microsac single guide
Number of holes 6
Cone angle of
fuel jet axis 148°
Hole diameter 0.145 mm Rated flow 400cm3/30s
Transparent engine
Injection Pressure
Sensor Optical
window Common Rail
Injection Pressure
Sensor Optical
window Common Rail
Engine 2
Common Rail diesel high-swirl
research engine
Injection system Common Rail System Injector type Solenoid driven
Nozzle Microsac single guide Number of holes 1
Hole diameter 0.15 mm Rated flow 67cm 3/30s
Injection system Common Rail System Injector type Solenoid driven
Nozzle Microsac single guide Number of holes 1
Hole diameter 0.15 mm Rated flow 67cm 3/30s
Engine type 4 stroke monocyl.
Bore 10.0 cm
Stroke 9.5 cm
Displacement 750 cc
Compress ion ratio 22.3:1
Connecting rod length 17 cm Divided -chamber volume 21.3 cm Optical Access Diameter 32 mm Connecting duct diam eter 0.8 cm Clearance height at TDC 0.15 cm
3 1
1 3
2
Scheme of the engine
Lateral and Top Cross-Sections
Toroidal bowl window diameter =34mm Lateral window diameter =16mm
IN
OUT IN OUT
Pressure transducer Nozzle tip
IN
OUT IN OUT
Pressure transducer Nozzle tip
IN
OUT IN OUT
Pressure transducer Nozzle tip
IN
OUT IN OUT
Pressure transducer Nozzle tip
Engine Layout
Three wide optical accesses:
- two longitudinal windows (=30 mm)
- one orthogonal window (w=10 mm and h=40 mm)
Front Lateral
Optical Set-up
Spectroscopic measurement
Extinction-scattering 2D Chemiluminescence
detector interface
Shaft
encoder Engine Lens
Injector
ICCD- Spectrograph Laser IR
Lens
Optical Breakdown
PC
ICCD: 512x512 pixels,1 kHz max recording rate, 180-900 nm spectral range.
Optical Set-up
Spectrometer
ICCD
Quarz Window
Mirror UV UV Lens
F 15cm
Quartz Window
UV - Vis Mirror ICCD
UV Objective
filter
Interference filter:
10 nm; =310, 430, 470,515 nm Spectrometer:
150 mm, f/3.8, grating 300 groove/mm
Spectroscopic measurement
Chemiluminescence Digital imaging
Air-Fuel Mixing
Mechanical PMAX = 300 bar
1000 rpm
2000 rpm
Common Rail P= 800bar
Effect of high pressure on fuel
injection phase
High pressure: 800bar
Digital image sequence of fuel injection phase
Liquid Distribution - Single jet
c o m b u s t i o n p r e s s u r e
d r i v e c u r r e n t
n e e d l e l i f t R O H R
- 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0
c r a n k a n g l e [ d e g r e e ] - 1 0
0 1 0 2 0 3 0 4 0 5 0 6 0
Combustion Pressure [bar]
0 . 0 0 0 . 1 0 0 . 2 0 0 . 3 0
needle lift [mm]
1 0 2 0 3 0
Drive current [Ampere]
- 8 0 - 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0
ROHR [a.u.]
Liquid-Vapor Distribution - Single jet
-6°-7°-5°
-3°-4°
-2°-1°TDC+1°
DIGITAL IMAGING
of fuel spray and combustion phase.
High pressure (600 bar) High pressure (600 bar)
- 3 0 - 2 5 - 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0 2 5 3 0 c r a n k a n g l e [ d e g r e e ]
0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
Combustion Pressure [bar]
0 2 0 4 0 6 0 8 0 1 0 0
ROHR [kJ/kg/CAD]
0 1 0 2 0
Drive Current [Ampere] M PSOC
Main Injection
Main Injection
-7.5-7 -6.5-6 -5.5-5-3 -2.5-2 -1.5-1 -0.50.51.52
- 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0
c r a n k a n g l e [ d e g r e e ] - 1 0
0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
Combustion Pressure [bar]
- 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0
ROH
0 1 0 2 0
Drive Current [Ampere]
1 0 0 0 R P M _ s o v r . 0 . 3 S P - 9 E P 4 0 0 u s S M - 4 E M 6 8 5 u s 6 0 0 b a r
DIGITAL IMAGING
of fuel spray and combustion phase.
High pressure (600 bar) High pressure (600 bar)
Pre+Main Injection
Pre+Main Injection
injector
tip of the jet intake valve
fuel jet
Fine droplets
Liquid core
Autoignition
4°BTDC
1
0 Vapor
concentration
1.5°BTDC 2°BTDC=SOC
2°BTDC=SOC
2°BTDC=SOC 4°BTDC
7.0°BTDC
OH
0 5 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0 2 0 0 0 0 0 2 5 0 0 0 0
emission intensity [a.u.]
1 ° A S O C 0 . 5 ° A S O C S O C
3 0 0 3 2 0 3 4 0 3 6 0 3 8 0 4 0 0 4 2 0 4 4 0 4 6 0
w a v e l e n g t h [ n m ]
OH
CH
UV-Visible spectra
Autoignition phase multi-jet
2 2 0 2 5 0 2 8 0 3 1 0 3 4 0 3 7 0 4 0 0 4 3 0 4 6 0
W a v e l e n g t h [ n m ] 0
1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0
Emission intensity [a.u.]
OH
CH
2 2 0 2 5 0 2 8 0 3 1 0 3 4 0 3 7 0 4 0 0 4 3 0 4 6 0
W a v e l e n g t h [ n m ] 0
1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0
Emission intensity [a.u.]
OH
3° BTDC= SOCpre CH 2.4° BTDC= 0.6°ASOCpre
Pre-injection - Autoignition phase
3.0° BTDC
2.5° BTDC
UV
@ 310nm
Vapor distribution Visible
Digital imaging
-3.5° -3.0° -2.5 -2.0° -1.5°
-3.5° -3.0° -2.5 -2.0° -1.5°
Visible flame @516nm
UV flame @310nm
Pre-injection - Autoignition phase
Single jet
Multi-jet Comparison
Pollutants Formation
SOOT
2 2 0 2 5 0 2 8 0 3 1 0 3 4 0 3 7 0 4 0 0 4 3 0 4 6 0
W a v e l e n g t h [ n m ] 0
1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0
Emission intensity [a.u.]
OH
2.4° BTDC= 0.6°ASOCpre
0 100000 200000 300000 400000 500000
Emission intensity [a.u.]
220 250 280 310 340 370 400 430 460
Wavelength [nm]
OH
0 100000 200000 300000 400000 500000
Emission intensity [a.u.]
220 250 280 310 340 370 400 430 460
Wavelength [nm]
OH
1.5° BTDC= 1.6°ASOCpre
Injection strategies
- 3 0 - 2 5 - 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0 2 5 3 0
c r a n k a n g l e [ d e g r e e ] 0
1 0 2 0 3 0 4 0 5 0 6 0 7 0
Combustion Pressure [bar]
0 2 0 4 0 6 0 8 0 1 0 0
ROHR [kJ/kg/CAD]
0 1 0 2 0
Drive Current [Ampere] M PSOC
- 3 0 - 2 5 - 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0 2 5 3 0
c r a n k a n g l e [ d e g r e e ] 0
1 0 2 0 3 0 4 0 5 0 6 0 7 0
Combustion Pressure [bar]
0 2 0 4 0 6 0 8 0 1 0 0
ROHR [kJ/kg/CAD]
0 1 0 2 0
Drive Current [Ampere]
Pre+M
PSOC Pre
PSOC M
- 3 0 - 2 5 - 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0 2 5 3 0
c r a n k a n g l e [ d e g r e e ] 0
1 0 2 0 3 0 4 0 5 0 6 0 7 0
Combustion Pressure [bar]
0 2 0 4 0 6 0 8 0 1 0 0
ROHR [kJ/kg/CAD]
0 1 0 2 0
Drive Current [Ampere]
Pre+M+P
PSOC Pre
PSOC M PSOC P
- 3 0 - 2 5 - 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0 2 5 3 0 c r a n k a n g l e [ d e g r e e ]
0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
Combustion Pressure [bar]
0 2 0 4 0 6 0 8 0 1 0 0
ROHR [kJ/kg/CAD]
0 1 0 2 0
Drive Current [Ampere]
Pre+M+P
PSOC Pre
PSOC M PSOC P
Pre+Main +Post
fuel amount 8 mm3/stroke P inj=600 bar
-4-3.5-2.5-3 -2-1.5-1 -0.5TDC0.511.5 2 2.533.544.555.5 66.577.525.588.599.51010.51111.51212.51313.51414.51515.51616.51717.51818.51919.52020.52121.52222.52323.52424.5252626.52727.52828.52929.53030.53131.53232.53333.53434.53535.536
Soot Evolution
0 4E+4- 1 0 - 5 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
C r a n k a n g l e d e g r e e 0
2 0 4 0 6 0
ROHR [kJ/kg deg]
SOIpre
SOImain
SOIpost SOCmain
SOCpost SOCpre
- 1 0 - 5 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
C r a n k a n g l e d e g r e e 0 x 1 00
2 x 1 08 4 x 1 08 6 x 1 08
Emission intensity [a.u.]
2.0°
0 600
2.5°
0 600
3.0°
0 600
3.5°
0 600
4.0°
0 600
4.5°
00 600600
5.0°
6.0°
0 600
7.0°
0 600
8.0°
0 600
9.0°
00 600600
10.0°
0 600
13.0°14.0°
0 600
15.0°
0 600
16.0°
0 600
17.0°
0 600
18.0°
0 600
19.0°
0 600
20.0°
00 600600
21.0°
11.0°
00 600600
12.0°
- 1 0 - 5 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
C r a n k a n g l e d e g r e e 0
2 0 4 0 6 0
ROHR [kJ/kg deg]
SOIpre
SOImain
SOIpost SOCmain
SOCpost SOCpre
- 1 0 - 5 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
C r a n k a n g l e d e g r e e 0
0 . 2 0 . 4 0 . 6 0 . 8 1
Emission intensity [a.u.]
OH
UV flame
Post-inj. – Soot oxidation phase