• Non ci sono risultati.

MfEA 1TASK MATHEMATICS for ECONOMIC APPLICATIONS 04/07/2015

N/A
N/A
Protected

Academic year: 2021

Condividi "MfEA 1TASK MATHEMATICS for ECONOMIC APPLICATIONS 04/07/2015"

Copied!
4
0
0

Testo completo

(1)

MfEA 1 TASK MATHEMATICS for ECONOMIC APPLICATIONS 04/07/2015

I M 1) The complex number 3  " has argument αœ $ Î%1 and modulus 3 œ# thus $ 3  " œ  $ # $  3 $  œ

% %

cos 1 sen 1

œ # $ † "  #5  3 $ † "  #5 œ

% $ $ % $ $

 ' cos 1 1 sen 1 1

œ #  5  3  5 5 œ !ß "ß #

% $ % $

# #

 ' cos1  sen1 

1 1 with . The three roots are:

D œ #  3 œ "  3

% % #

%

!    

 

'

$

cos 1 sen1

;

D œ # ""  3 "" œ #  # $  "  #3 $  " œ

"# "# % %

"        

   

' '

cos 1 sen 1

œ %  $  "  3 $  "

%

$     ;

D œ # "*  3 "* œ # # $  "  3 # $  " œ

"# "# % %

#       

   

' '

cos 1 sen 1

œ % $  "  3 $  "

%

$    .

I M 2) The characteristic polynomial of is  -

-

-

-

: œ œ

"  #  "

#  "

%  % 5 

 

 

 

 

 

 

 

œ "   "  # # "  #  œ

 % 5  % 5  %  %

 - -     -

- -

œ "  - - # 5  %  # #5  #  %   )  %-   -   -œ œ -$ "  5 -#  %  5 - % &  5  ;

if - œ ! is an eigenvalue of matrix ,  : - must satisfy condition : ! œ !  or

% &  5 œ !  and so 5 œ &. For 5 œ & :,  - becomes:

: - œ -$ '-# * œ - - -  $# and thus the three eigenvalues of are

-" œ !, -# œ-$ œ $. To check for diagonalizability of the matrix we must find the

geometric multiplicity of multiple eigenvalue -$ œ $; to do so, we consider the system:

 $ˆ† @ œ ! Ê Ê

@  @ @

@  @ @

@  @ @

@  @ @

@  @ @

 

 # #  œ !

# $  œ !

% %  # œ !

 # #  œ !

# $  œ !

" # $

" # $

" # $

" # $

" # $

(the third equation is a multipler of the first), with solution:

@ œ @ ß ß  #@ " ! "œ @ "ß ß  #" ! .

As we can simply note, the eigenvectors associated with eigenvalue -$ œ $ belong to a line, thus geometric multiplicity of eigenvalue -$ œ $ is , less than its algebraic multi-"

plicity, so the matrix is not a digonalizable one.

A basis for the eigenspace associated to -$ œ $ is UIW $  œ"ß ß  #! .

I M 3) For a linear map 0 À‘% Ä‘$, 0 — œ —† , Kernel's dimension is given by dim ‘% dim Imm  0 œ % Rank  , so Kernel's dimension is maximum when Rank  is minimum. To calculate the rank of the matrix we reduce it by elementary operations on its lines:

(2)

MfEA 2

   

   

   

   

   

   

   

   

   

   

   

   

" " " " " " " "

" " 7 " ! ! 7  " !

" " " 5 ! ! ! 5  "

Ê

V Ã V  V V Ã V  V

# # "

$ $ "

and from the last matrix we get:

Rank .

if and

if and or and

if and

 

    

 œ

" œ " œ "

# œ " Á " Á " œ "

$ Á " Á "

7 5

7 5 7 5

7 5

Kernel's dimension is maximum when 7 œ 5 œ " and in this case dimKer 0 œ $. The matrix becomes  œ

" " " "

" " " "

" " " "

 

 

 

 

 

 

 

 

 

 

 

 

.

To find bases for Kernel and Image of the linear map we begin determining the elements of Kernel:  —† œÊB  B " # B$B% œ !Ê B% œ  B  B " # B$. The elements of Kernel have the form: — œB ß B ß" # B ß$  B  B " # B$œ

œB"†"ß !ß!ß  "B#†!ß "ß!ß  " B †$ !ß !ß"ß  " ; so a basis may be:

UKer 0 œ"ß !ß!ß  " ß !ß "ß  !ß  " ß !ß !ß  "ß  ". The elements of the Image have the form:

˜œ —† œB  B " # B$B%ß B  B " # B$ B%ß B  B " # B$B%œ œCß Cß CœC†"ß "ß "; so UImm 0 œ"ß "ß ".

I M 4) Remember that square matrices and of the same order are similar if a non  singular matrix exists such that   † œ † , or œ"† † . So:

 œ# ! †" #   † # !œ † # !  † % % 

" # #  " " #  " # $  # Ê

"

"

%

Ê # #

 œ  #

 # .

II M 1) Since 0 T œ "  , the condition is satisfied then à f0 Bß C œ  #Bß #C, f0 T œ  #ß # and ‡  0 œ‡0 T œ# !

! # . Since 0 T Á !Cw  an implicit function B Ä C B  exists, B œ! "

#. We calculate Cw B and Cww B and we get: Cw B œ  0 T œ "

! ! ! 0 TBw

Cw

   and

Cww Cw  Cw # #

     

B œ  0 T  # 0 T † B 0 T † B œ  œ #

0 T

#  !  #

 #

! BBww BCww CCww

! !

Cw

       

    .

II M 2) From W@0 " ß " œ f0 " ß " †@ we have f0 œ/BC B/BCß  B/BC, f0 "  ß " œ #ß  " and W@0 "  ß " œ #ß  " † cosαßsenαœ#cosαsenα. From condition W@0 " ß " œ ! it follows:

#cosαsenα α α 1 α 1

œ ! Ê œ # Ê œ #   

# #

tg arctg , .

II M 3) We construct the Lagrangian function:

ABß Cß Dß-œ B  C  D -B  C  D  $# # # . First Order Conditions:

f œ " A  # Bß - " # Cß- " #-D  B  C  D  $ß  # # # , from which:

(3)

MfEA 3

  

  

  

  

  

  

  

"  œ ! œ "Î

"  œ ! œ  "Î

"  D œ ! D œ "Î

B  C  D œ $ $Î œ $

Ê Ê

œ „"

œ …"

D œ „"

œ „"Î

# B B #

 # C C #

# #

%

B C

#

- -

- -

- -

- -

# # # #

  

  

.

We get two constrained critical points: T" œ " ß  ß" " and T# œ  " " ß ß ". Second Order Conditions:

‡ A -

-

-

  œ

D

D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!

! !

! !

! !

#B #C #

#B #

#C #

# #

.

The problem has three variables and one constraint, so we must consider two leading minors, ‡$and :‡%

‡ -

- -

-

$ œ  œ   # œ

 

 

 

 

 

 

 

!

!

!

!

!

#B #C

#B #

#C #

#B #B C #B #

#C # #C

   

œ ) B  ) C œ )- # - # -B  C# # ;

‡ -

-

-

% œ œ

D

D 

 

 

 

 

 

 

 

 

!

! !

! !

! !

#B #C #

#B #

#C #

# #

œ  #D

#B #

# #B

# #

   

   

   

   

   

   

#C #D #C

!  # !

 # !

 !

! ! C 

 # œ

! B

- -

- -

-

œ  %D#%-# #- #B  % B  #C % C œ -   - 

œ  "' B  "' C  "' D œ  "'-# # -# # -# # -#B  C  D# # # .

It's easy to note that ‡%  ! at T" and T#, ‡$  ! at T" while ‡$  ! at T#.

It follows that T" is a maximum point with 0 T" œ $ while T# is a minimum point with .0 T# œ  $

II M 4) The feasible region is a square represented in red colour in the left figure inX the next page. Note that the function is simmetric respect to the origin 0 Sœ ! ! ß

0  Bß  C œ 0 Bß C    and 0  Bß C œ 0 Bß  C    thus we can study the optimiza- tion problem only on the right part of the square .X

First case (free optimization)

First Order Conditions: f0 œ . œ ! Ê œ !

œ ! œ !

#B  %Cß  %B  #C #B  %C B

 %B  #C C

  .

Free optimization presents only one critical point S that belongs to the interior of .X Second Order Conditions: ‡ 0  œ ‡# S œ  #  %œ  " ; so

 % # #  ! S is a

saddle point.

Second case (optimization along the border of )X

0 Bß "  B œ B  # %B"  B  "  B  # œ 'B# 'B ", that is a parabola with mi- nimum equal  "Î# at point B œ "Î #.

0 Bß B  " œ B  # %BB  "  B  "  # œ #B # #B ", that is a parabola with maximum equal $Î# at point B œ "Î #.

(4)

MfEA 4

We conclude that Max 0 œ $Î# at points "Î#ß "Î# and "Î "Î#ß # (blue points on the left figure below), min 0 œ  "Î# at points "Î "Î#ß # and "Î#ß "Î# (pink points).

On the right figure below there have been drawn negative level curves (pink), zero level curves (yellow) and positive level curves (blue).

Riferimenti

Documenti correlati

a compact set, and so surely exist maximum and mini- mum values.. It is not convenient to use

TASKS of MATHEMATICS for Economic Applications AA... Find

[r]

Using Kuhn-Tucker conditions, we form the Lagrangian function:... We apply first

For a complete analysis we form the Lagrangian function only for this con- straint.. For a complete analysis we form the Lagrangian function only for

Being a problem with an inequality constraint we apply the Kuhn-Tucker conditions, find the solutions and then we study the objective function on the frontier

[r]

[r]