• Non ci sono risultati.

TASK MATHEMATICS for ECONOMIC APPLICATIONS 5/07/2019

N/A
N/A
Protected

Academic year: 2021

Condividi "TASK MATHEMATICS for ECONOMIC APPLICATIONS 5/07/2019"

Copied!
4
0
0

Testo completo

(1)

TASK MATHEMATICS for ECONOMIC APPLICATIONS 5/07/2019

I M 1) If D œ / and D œ / cos$  3sin$ , calculate D † D .

% %

" "$ 31 # " #

 1 1 

From D œ /" "$ 31 œ /"† /$ 31 œ /"cos$1 3sin$1œ

œ /"cos1 3sin1œ  /".

So D † D œ / † cos sin † / cos$  3sin$ œ

% %

" # "  1 3 1  1 1

œ / † /  $  $ œ " † (  3 (

% % % %

"

cos1 1 sin1 1 cos 1 sin 1.

 3

So D † D œ" # " †cos  sin  .

( # ( #

)1  5 #1  3 )1  5 #1 ß ! Ÿ 5 Ÿ "

For 5 œ ! À (  3 ( , for 5 œ " À "&  3 "& Þ

) ) ) )

cos 1 sin 1 cos 1 sin 1

I M 2) Given the matrix  œ find an orthogonal matrix which diagona-

! " ! !

" ! ! !

! ! !  "

! !  " !

 

 

 

 

 

 

 

 

lizes .

The matrix is a symmetric one, and so it is surely diagonalizable by an orthogonal matrix.

From  

   

   

   

   

   

   

   

   

 - ˆ

- -

- - -

- -

- -

 œ œ œ

 " ! !   " " ! !

"  ! ! "   ! !

! !   " ! !   "

! !  "  ! !  " 

œ "   "  œ

 "

 

 

   

   

   

   

   

   

   

- -

-

- -

- -

! ! ! !

!  " !  "

!  " !  "

œ "  -- - # "  "   -"-# " œ - "- "-# " œ !

for -" œ-# œ " and -$ œ -% œ  ".

For finding the corresponding eigenvectors we solve two systems.

 

     

     

     

     

     

     

     

     

 " †ˆ †—œ Ê † œ Ê

 " " ! ! B !

"  " ! ! B !

! !  "  " B !

! !  "  " B !

"

#

$

%

Ê B  B œ ! Ê B œ B B ß B ß B ß  B

B  B œ ! B œ  B

" #" #  

$ % $ % and so the eigenvectors " " $ $ from which we get two orthogonal eigenvectors —" œ "ß "ß !ß !  and —# œ !ß !ß "ß  " .

   

     

     

     

     

     

     

     

     

  " †ˆ †—œ Ê † œ Ê

" " ! ! B !

" " ! ! B !

! ! "  " B !

! !  " " B !

"

#

$

%

Ê B  B œ ! Ê B œ  B B ß  B ß B ß B

B  B œ ! B œ B

" #" #  

$ % $ % and so the eigenvectors " " $ $ from which we get two orthogonal eigenvectors —$ œ "ß  "ß !ß !  and —% œ !ß !ß "ß " .

(2)

Using the corresponding unit vectors as columns we find the orthogonal matrix:

” œ

! !

!  !

! !

!  !

 

 

 

 

 

 

 

 

 

 

 

" "

# #

" "

# #

" "

# #

" "

# #

.

I M 3) The matrix  œ + + admits the eigenvectors "ß " and "ß  " both correspon-

+ +

"" "#    

#" ##

ding to the eigenvalue - œ ". Find the matrix . The matrix satisfies À

 † " œ " † " œ " Ê + + † " œ " Ê

" " " + + " "

       ""#" "###     Ê +  + œ " Ê + œ "  +

+  + œ " + œ "  +

""#" "###"##" ""## . The matrix satisfies also À

 † " œ " † " œ " Ê + + † " œ " Ê

 "  "  " + +  "  "

       ""#" "###    

Ê +  + œ " Ê +  "  + œ " Ê #+ œ # Ê + œ "

+  + œ  " "  +  + œ  " #+ œ # + œ "

""#" "###"" ## ""####""""## .

So + œ ! and " !.

+"# œ ! œ ! "

#"

I M 4) Given the vector subspace of – ‘$ having base –" œ "ß !ß " à  –# œ "ß "ß ! , check the values for the parameter for which the vector 5 —œ "ß "ß 5  belongs to .–

Our problem is like checking for the existence of solutions of a linear system having this augmented matrix:   . To get Rank  Rank  so to satisfy

 

 

 

 

 

 

 ˜l œ  œ  ˜l

" " l "

! " l "

" ! l 5

Rouchè-Capelli Theorem, since Rank  œ #, we simply need to get Det ˜l œ ! and so:

     

     

     

     

     

     

" " " " " " " " "

! " " ! " " ! " "

" ! 5 !  " 5  " ! ! 5

œ œ œ 5 œ ! .

So the vector —œ "ß "ß 5  belongs to only if – 5 œ !.

II M 1) Given the function 0 Bß C œ B /   C C /B and the unit vector @œcosαßsinα, find the values of for which α H 0 "#@ß@  ß " œ /.

0 Bß C œ B /   C C /B is a twice differentiable function a Bß C −  ‘#. So:

H 0@  "ß " œ f0 "ß " † @ and H 0 "#@ß@  ß " œ @ †‡ "ß " † @X . We get f0 B ß C œ / C C /Bà B / C /B Ê f0   "ß " œ !ß ! ;

From f0 B œ /  à B /  we get Bß C œ  /  and so:

/  B /

 ß C  C / /    C / /

/

C C C

C C

B B B B

‡  B

‡ "ß " œ  ! H 0 "  œ †‡ †

! /

 /   

Ê #@ß@ ß " cos sin "ß " cos œ

α α sinα

α

œ / œ  / œ

cos sin  cos cos sin  / cos

sin sin

α α α α α α

α α

†  ! † †

! /

     

œ  /cos#α /sin#αœ  /cos# œ /α forÀ

(3)

cos# œ  " Ê # œ Ê œ or # œ $ Ê œ

# #

α α 1 α 1 α 1 α $1

.

II M 2) Given the equation 0 Bß Cß D œ B /  CD  C /BD œ !, satisfied at T œ !ß !ß ! , verify that it is possible to define an implicit function Bß D Ä C Bß D   and then calculate the deriva- tives of such function at C œ !.

From f0 B ß Cß D œ /CD  C /BDàB /CD /BDà  B /CD  C /BD we getÀ

f0!ß !ß ! œ " à  "à ! and since 0Cw!ß !ß !œ  " Á ! it is possible to define an implicit function Bß D Ä C Bß D  . For its derivatives we have:

`C " `C !

`B œ   " œ "à `D œ   " œ !.

II M 3) S

Max/min u.c.:

olve the problem: .







 



0 Bß C œ B C

$C  B  $ Ÿ !

!

!

#

Ÿ B Ÿ C

The objective function of the problem is a continuous function, the feasible region is a triangleX in the first quadrant of the real plan, i.e. a compact set, and so surely exist maximum and mini- mum values.

It is not convenient to use Kuhn-Tucker's conditions. We check for free maximum or minimum points and then we study the problem in the boundary points.

In the first quadrant, since B   ! and C   !, we get 0 Bß C œ B C   !  # , and so all the points belonging to the axes B œ ! and C œ !, where 0 Bß ! œ 0 !ß C œ !    , are minimum points.

For free maximum or minimum points we get:

0 

0Bw # Ê a B

Cw

œ C œ !

œ #BC œ ! C œ ! , points just studied.

It remains only to study the points satisfying $C  B  $ œ ! Ê B œ $  $C Þ Substituting we get: 0 $  $Cß C œ $  $C C œ $C  $C    # # $ and deriving we get:

0 C œ 'C  *C œ $C #  $C   ! ! Ÿ C Ÿ #

$

w  #   for .

So the point "à# is the maximum point, with 0 "à #œ % while all the points Bß ! and

$ $ *

!ß C are minimum points (red lines)

(4)

II M 4) Given the function 0 Bß Cß D œ B  %B  C  D  &B  #C  $ # # # nalyze the nature of itsa stationary points.

To nalyze the nature of the stationary points of the function we apply first and second order a conditions. For the first order conditions we pose:

f Ê Ê

0 œ $B  )B  &

0 œ #C  # œ ! 0 œ #D

B C œ "

D œ 0 Bß Cß D œ

œ ! œ !

œ B œ "

!

  

 





w #

Bw C Dw

&

$ or

and so we get two statio-

nary points: T œ" &  and T œ"  

$à "à ! "à "à ! Þ For the second order conditions we construct

the Hessian matrix: ‡  .

 

 

 

 

 

 

Bß Cß D œ

'B  ) ! !

! # !

! ! #

  ‡

 

 

 

 

 

 



  

 

&

$à "à ! œ T

# ! !

! # ! œ %  !

! ! # œ )  !

. Since "# the point is a minimum point.

$

"

œ #  !

‡ ‡

  ‡

 

 

 

 

 

   

"à "à ! œ   T

 # ! !

! # !

! ! #

. Since " the point is a saddle point.

" œ  #  ! #

œ #  !

Riferimenti

Documenti correlati

[r]

For the second order conditions we use the borde-. red Hessian matrix: ‡

Find

a To nalyze the nature of the stationary points of the function we apply first and second order

To nalyze the nature of the stationary points of the function we apply first and second order

a To nalyze the nature of the stationary points of the function we apply first and second order

Using Kuhn-Tucker conditions, we form the Lagrangian function:... We apply first

For a complete analysis we form the Lagrangian function only for this con- straint.. For a complete analysis we form the Lagrangian function only for