• Non ci sono risultati.

QUANTITATIVE METHODS for ECONOMIC APPLICATIONS MATHEMATICS for ECONOMIC APPLICATIONS TASK 6/10/2020

N/A
N/A
Protected

Academic year: 2021

Condividi "QUANTITATIVE METHODS for ECONOMIC APPLICATIONS MATHEMATICS for ECONOMIC APPLICATIONS TASK 6/10/2020"

Copied!
6
0
0

Testo completo

(1)

QUANTITATIVE METHODS for ECONOMIC APPLICATIONS MATHEMATICS for ECONOMIC APPLICATIONS

TASK 6/10/2020

I M 1) Calcolate " $ 3$Þ

Since "  $ 3 œ # "  $3 œ # cos  3sin we get:

# # $ $

   

 1 1

" $ 3 $  3 $ œ )  3 œ  )

$ $

$ œ )cos 1 sin 1 cos sin 

1 1 .

And finally:

" $ 3 œ ) œ )   5  3   5 ß ! Ÿ 5 Ÿ " Þ

# # # #

# #

$ cos 1 1 sin 1 1

For 5 œ ! we get D œ!  )  3 œ ## 3à

# #

cos1 sin1

for 5 œ " we get D œ"  ) $  3 $ œ  ## 3Þ

# #

cos 1 sin 1

I M 2) Given the linear map 0 À Ä having matrix œ , determi-

"  " # "

! # " #

# ! 5 7

%$

 

 

 

 

 

 

 

 

 

 

 

 

ne the value of the parameters and if the Kernel and the Image have the same dimension.5 7 For such values find a basis for the Kernel of the linear map generated by Þ

To get Dim Imm œDim Ker we need Rank    œ # Þ

By elementary operations on the rows    V Ã V  #V$ $  " we getÀ

   

   

   

   

   

   

"  " # " "  " # "

! # " # ! # " #

# ! 5 7 ! # 5  % 7  #

Ä à

By elementary operations on the rows V Ã V  V$ $ # we getÀ

   

   

   

   

   

   

   

   

   

   

   

   

"  " # " "  " # "

! # " # ! # " #

! # 5  % 7  # ! ! 5  & 7  %

Ä Þ

So Dim Imm œRank  œDim Ker œ # for 5 œ & and 7 œ % Þ

And so  œ .

"  " # "

! # " #

# ! & %

 

 

 

 

 

 

 

 

 

 

 

 

To find a basis for the Kernel of the linear map generated by we must firstly solve the sys-

tem:  —† œÊ † œ .

"  " # " !

! # " # !

# ! & % !

B B B B

     

     

     

     

     

     

 

 

 

 

 

 

 

 

"

#

$

%

(2)

So we get the system: which however, for the elementary opera-



B  B  #B  B œ !

#B  B  #B œ !

#B  &B  %B œ !

" # $ %

# $ %

" $ %

tions on the rows that we have already done, is equivalent to the system:

B  B  #B  B œ ! B œ  B  B  #B 

#B  B  #B œ ! Ê  #B  %B  $B œ ! Ê B œ  B  B Þ

B œ B  B

" # $ % % " # $

# $ % " # $

$ " #

% " #

# %

$ $

" &

$ $

Each vector of the Kernel can be represented as — œ B ß B ß  #B  B ß% "B  &B .

$ $ $ $

" # " # " #

If we choose B œ $" and B œ !# we get the vector —" œ $ß !ß  #ß " . If we choose B œ !" and B œ $# we get the vector —# œ !ß $ß %ß  & . So a basis for the Kernel is: — œ$ß !ß  #ß " ß !ß $ß %ß  &  .

I M 3) Given the matrix  œ , find the value of the parameter knowing5

# #  "

$ !  #

5 # "

 

 

 

 

 

 

 

 

 

 

 

 

that the matrix admits the eigenvalue - œ  " and then determine, for this value of the para- meter, if the matrix is diagonalizable or not.

From - ˆœ ! we get:

   

   

   

   

   

   

# #  " # !  #

$  # $  #

5 # " 5 # "

   5

 

 

œ

- - -

- -

- -

œ

œ#- 5-# - %  - #'  5-œ !Þ

If - œ  " we get $ 5 '    $'  5 œ ")  '5  ")  $5 œ ! Ê 5 œ ! Þ

So  œ . And also:

# #  "

$ !  #

! # "

 

 

 

 

 

 

 

 

 

 

 

 

- ˆ œ #- - #- %  - # ' œ#- - #- # œ ! Ê Ê#- -  #- " œ ! Ê-" œ-# œ #ß-$ œ  "Þ

To check if the matrix is diagonalizable or not we have to find the Rank of  #ˆÀ

   

 

 

 

 

 

 

 

 

 

 

 

   

 #ˆ œ œ  ' Á !  #ˆ œ #

! #  "

$  #  #

! #  "

! #

$  #

. Since it is Rank for

which it is 7 œ $  # œ "  7 œ #1# +# and so the matrix is not a diagonalizable one.

I M 4) Find the coordinates of the vector in the basis — • œ"ß !ß ! ß "ß "ß ! ß "ß !ß "     if it has coordinates #ß !ß  " in the basis –œ"ß "ß ! ß "ß  "ß " ß "ß !ß "    .

Since has coordinates — #ß !ß  " in the basis –œ"ß "ß ! ß "ß  "ß " ß "ß !ß "    , it is:

— œ † œ

" " " # "

"  " ! ! #

! " "  "  "

     

     

     

     

     

     

 

 

 

 

 

  .

To find the coordinates of the vector in the basis — • œ"ß !ß ! ß "ß "ß ! ß "ß !ß "     we have to solve the system:

     

     

     

     

     

     

 

 

 

 

 

 

 

 

 

" " " B " B  C  D œ " B œ !

! " ! C # C œ # C œ #

! ! " D  " D œ  " D œ  "

† œ Ê Ê Þ

(3)

II M 1) Solve the problem : Max/min . u.c. :

 0 Bß C œ B  C  B Ÿ C Ÿ "

# #

#

The objective function of the problem is a continuous function, the constraints define a feasi- ble region which is a compact and bounded set, and so we can apply Weierstrass Theorem.

Surely the function admits maximum value and minimum value.

To solve the problem we use the Kuhn-Tucker conditions.

We write the problem as

Max/min u.c.:



 

0 Bß C œ B  C B  C Ÿ !

C  " Ÿ !

# #

#

ABß Cß- -"ß #œB  C # # -"B  C #  -#C  ". By applying the first order conditions we have:

1) case -" œ !ß-# œ ! À

 

 

 

 

 

 

 

A A

wB wC

œ #B œ ! œ  #C œ !

Ê

B œ ! C œ ! B  C Ÿ !

Ÿ !

! Ÿ ! !  #

Ÿ !

# !

#

C  "  "

Bß C œ œ !ß !

Þ Since ‡    ‡  we have that, globally, the point  !ß ! is a saddle point. We will study it more precisely later.

2) case -" Á !ß-# œ ! À

 

 

 

 

 

 

 

A - -

A -

-

wB " "

wC "

"

œ #B  # B œ #B "  œ ! œ  #C  œ !

Ê

B œ ! C œ ! œ !

 

C œ B

C Ÿ " ! Ÿ "

# À we will study it more precisely later;

   

   

   

   

   

  

  

  

  

  

  

A - -

A -

- -

wB " "

wC "

#

" "

œ #B  # B œ #B "  œ ! œ  #C  œ !

Ê Ê

B œ C œ

œ

B œ B œ 

C œ C œ

œ

 

C œ B

C Ÿ " Ÿ " Ÿ "

#

"

"#

#

"

#

" "

# #

" "

# #

"

#

1 1

-" œ 1

"

# Ÿ "

Þ

Since -"  ! the points " ß " and " ß" may be maximum points.

# # # #

    

3) case -" œ !ß-# Á! À

 

 

 

 

 

 

 

A

A -

-

wB

wC #

#

œ #B œ !

œ  #C  œ !

C œ " Ê

B œ ! C œ "

B Ÿ C

œ  #  !

! Ÿ "

#

Þ

Since -#  ! the point  !ß " may be a minimum point.

4) case -" Á!ß-# Á! À

  

  

  

  

  

  

  

A -

A - -

- -

- - - -

wB "

wC " #

" "

" # " #

œ #B  # B œ !

œ  #C   œ !

C œ "

Ê ∪ Ê

B œ " B œ  "

C œ " C œ "

#  # œ ! #  # œ !

 œ #  œ #

C œ B#

(4)

Ê ∪

B œ " B œ  "

C œ " C œ "

œ " œ "

œ  " œ  "

 

 

 

 

 

 

 

   

- -

- -

" "

# #

. The points "ß " and  "ß " are neither maximum nor

minimum points.

Let's study the objective function on the constraint C œ B#.

It is 0 Bß B # œ B  B Ê 0 B œ #B  %B œ #B "  #B# % w  $#   ! . It is "  #B   ! B Ÿ "

#

# Ê # Ê  " Ÿ B Ÿ "

# #

  and so:

The points  " " and  " " are maximum points with  " " .

#ß #ß #ß

# # #

   0 „ œ "

% Let's study the objective function on the constraint C œ ".

It is 0 Bß " œ B  " Ê 0 B œ #B   !  # w  for B   !.

The point  !ß " is a minimum point with 0 !ß " œ  "  .

Finally we study the point  !ß ! . It is 0 !ß ! œ !  . Then 0 Bß C œ  B  C  # # ! for C Ÿ B# # satisfied for  B Ÿ C Ÿ B   . In each neighborhood of the point  !ß ! we have both positive and negative values and therefore  !ß ! is a saddle point.

(5)

II M 2) Given the function 0 Bß Cß D œ B  BC  C  D  # # # determine the nature of its statio- nary point.

We determine the stationary points of the function. Applying the first order conditions we have:

f0 Bß Cß D œ   Ê Ê Þ

0 œ #B  C œ ! 0 œ  B  #C œ ! 0 œ #D œ !

B œ ! C œ ! D œ !

 

 

 

Bw Cw Dw

Then we apply the second order conditions: ‡Bß Cß D œ œ‡ .

 

 

 

 

 

 

 

 

 

 

 

 #  " !  

 " # !

! ! #

!ß !ß !

Since: the point



  

 ‡  

"

#

$

œ #  ! œ $  ! œ '  !

!ß !ß ! is a minimum point.

II M 3) Given the function 0 Bß C œ /  B C# # and the unit vector @œcosαßsinα calculate its directional derivatives W@ @# 0 !ß ! .

The function 0 Bß C œ /  B C# # it is clearly differentiable of every order a Bß C −  ‘#. So W#@ß@0 !ß ! œ @ †‡0 !ß ! † @X .

From f0Bß C œ #B /  B C# #à #C /B C# # we getÀ

‡Bß C œ     ‡ œ

     

# "  #B / %BC / # !

%BC / # "  #C / Ê !ß !

! #

#

#

B C B C

B C B C

# # # #

# # # # and so:

W α α α α α

α

# # #

@ß@0 !ß ! # ! #  # œ #

! #

 œcos sin †  † cos œ Þ

sin cos sin

(6)

II M 4) Given the equation 0 Bß C œ B  sinC  CcosB œ !, verify if at P! œ !ß !  it is pos- sible to define an implicit function having as dependent variable of and then calculate theC B partial derivative of the first order of C B  at B œ !.

The function0 Bß C  is a differentiable function a Bß C −  ‘#, 0 !ß ! œ !  ! œ !  . It is then: f0 Bß C œ  sinC  CsinBà BcosC cosB Þ

So f0 !ß ! œ ! à  ". Since 0 !ß ! œCw  1 Á ! we can define an implicit function B Ä C B  whose first order derivative is:

d d

C 0 !ß !

B ! œ  0 !ß !  œ  œ ! Þ

 

Bw Cw

!

 "

Riferimenti

Documenti correlati

For the second order conditions we use the borde-. red Hessian matrix: ‡

Find

To nalyze the nature of the stationary points of the function we apply first and second order

a To nalyze the nature of the stationary points of the function we apply first and second order

Using Kuhn-Tucker conditions, we form the Lagrangian function:... We apply first

For a complete analysis we form the Lagrangian function only for this con- straint.. For a complete analysis we form the Lagrangian function only for

Firstly we search for two linearly independent eigenvectors corresponding to the eigenvalue -

[r]