• Non ci sono risultati.

1 + cos(θ), it is easy to verify that an = 2n−1(1 − cos(α/2n

N/A
N/A
Protected

Academic year: 2021

Condividi "1 + cos(θ), it is easy to verify that an = 2n−1(1 − cos(α/2n"

Copied!
1
0
0

Testo completo

(1)

Problem 11604

(American Mathematical Monthly, Vol.118, November 2011) Proposed by P´al P´eter D´alyay (Hungary).

Given 0 ≤ a ≤ 2, let {an}n≥1 be the sequence defined by a1 = a, an+1 = 2n−p2n(2n− an) for n ≥ 1. Find

X

n=1

a2n.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let

α = 4 arcsin(p a/2) =

(arccos(2a2− 4a + 1) if a ∈ [0, 1], 2π − arccos(2a2− 4a + 1) if a ∈ [1, 2].. then, by using the fact that 2 cos2(θ/2) = 1 + cos(θ), it is easy to verify that

an = 2n−1(1 − cos(α/2n)).

Hence for N > 0

N

X

n=1

a2n =

N

X

n=1

4n−1(1 + cos2(α/2n) − 2 cos(α/2n))

=

N

X

n=1

4n−1



1 +1 + cos(α/2n−1)

2 − 2 cos(α/2n)



=1 2

N

X

n=1

4n(1 − cos(α/2n)) −1 2

N

X

n=1

4n−1 1 − cos(α/2n−1)

=1 2

N

X

n=1

4n(1 − cos(α/2n)) −1 2

N −1

X

n=0

4n(1 − cos(α/2n))

=1

2 4N(1 − cos(α/2N) − (1 − cos(α) . Finally

X

n=1

a2n= 1 2

 lim

N →+∞4N(1 − cos(α/2N) − (1 − cos(α))



= α2

4 + a2− 2a = 4 arcsin2(p

a/2) + a2− 2a.



Riferimenti