• Non ci sono risultati.

Therefore, 1 F2mn+ iFm =F2nm− iFm F2nm2 + Fm2 = F2mn− iFm F(2n+1)mF(2n−1)m = Fm F2m  1 F(2n−1)m − 1 F(2n+1)m

N/A
N/A
Protected

Academic year: 2021

Condividi "Therefore, 1 F2mn+ iFm =F2nm− iFm F2nm2 + Fm2 = F2mn− iFm F(2n+1)mF(2n−1)m = Fm F2m  1 F(2n−1)m − 1 F(2n+1)m"

Copied!
1
0
0

Testo completo

(1)

Problem 12118

(American Mathematical Monthly, Vol.126, June-July 2019) Proposed by H. Ohtsuka (Japan).

Compute

X

n=0

1 F2mn+ iFm

wherem is an odd integer and Fn is then-th Fibonacci number.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. By using the known identity

Fi+jFi+k− FiFi+j+k = (−1)iFjFk

with i, j, k ∈ Z, it follows that for any odd integer m, Fm= F−mand F2nm+mF2nm−m− F2nm2 = Fm2 =⇒ F(2n+1)mF(2n−1)m= F2nm2 + Fm2 FmF2nm−m− F−mF2nm+m= −F2mF2nm =⇒ F2nm

F(2n+1)mF(2n−1)m

= Fm/F2m

F(2n−1)m− Fm/F2m

F(2n+1)m

F2nm+mF2nm−2m− F2nmF2nm−m= −FmF2m =⇒ Fm

F(2n+1)mF(2n−1)m

=F2nm/F2m

F(2n+1)m −F(2n−2)m/F2m

F(2n−1)m

.

Therefore, 1 F2mn+ iFm

=F2nm− iFm

F2nm2 + Fm2 = F2mn− iFm F(2n+1)mF(2n−1)m

= Fm

F2m

 1

F(2n−1)m − 1 F(2n+1)m



− i F2m

 F2nm

F(2n+1)m −F(2n−2)m

F(2n−1)m



Hence the given sum is telescopic:

X

n=0

1 F2mn+ iFm

= Fm

F2m

X

n=0

 1

F(2n−1)m − 1 F(2n+1)m



− i F2m

X

n=0

 F2nm

F(2n+1)m −F(2n−2)m

F(2n−1)m



= Fm

F2mF−m− i F2m



φ−m−F−2m

F−m



= 1 F2m − i

F2m



φ−m+F2m

Fm



= 1 − iφm F2m

where φ = (1 +√

5)/2 and by the Binet’s formula

n→∞lim F2nm

F(2n+1)m

= φ−m and F2m

Fm

= φm− φ−m.



Riferimenti