• Non ci sono risultati.

Show that n X i=0 xi i !4 ≤ 2π2 n X i,j=1 xixj i + j n X i,j=1 xixj (i + j)3

N/A
N/A
Protected

Academic year: 2021

Condividi "Show that n X i=0 xi i !4 ≤ 2π2 n X i,j=1 xixj i + j n X i,j=1 xixj (i + j)3"

Copied!
1
0
0

Testo completo

(1)

Problem 11680

(American Mathematical Monthly, Vol.119, December 2012) Proposed by Benjamin Bogosel (France), and Cezar Lupu (Romania).

Let x1, . . . , xn be nonnegative real numbers. Show that

n

X

i=0

xi i

!4

≤ 2π2

n

X

i,j=1

xixj i + j

n

X

i,j=1

xixj (i + j)3.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

It suffices to apply the following integral version of Carlson’s inequality: if f is a non negative function defined in [0, +∞) such that f (t), tf (t) ∈ L2([0, +∞) then

Z +∞

0

f (t) dt

4

≤ π2 Z +∞

0

(f (t))2dt Z +∞

0

t2(f (t))2dt.

Indeed, take f (t) =Pn

i=1xie−it, then, since for any nonnegative a Z +∞

0

e−atdt = 1 a and

Z +∞

0

t2e−atdt = 2 a3, it follows that

Z +∞

0

f (t) dt =

n

X

i=1

xi

Z +∞

0

e−itdt =

n

X

i=0

xi

i , Z +∞

0

(f (t))2dt =

n

X

i,j=1

xixj

Z +∞

0

e−(i+j)tdt =

n

X

i=0

xixj

i + j, Z +∞

0

t2(f (t))2dt =

n

X

i,j=1

xixj

Z +∞

0

t2e−(i+j)tdt = 2

n

X

i=0

xixj (i + j)3,

and the required inequality holds by the above Carlson’s inequality. 

Riferimenti