• Non ci sono risultati.

Facoltà di Ingegneria

N/A
N/A
Protected

Academic year: 2021

Condividi "Facoltà di Ingegneria "

Copied!
6
0
0

Testo completo

(1)

Facoltà di Ingegneria

Prova scritta di Fisica II – 22.9.2005

Costanti: 2

2 12

0 Nm

10 C 85 ,

8 ⋅

=

ε ,

A 10 Tm

4 7

0

π

= µ Esercizio n.1

Quattro cariche di uguale valore assoluto q, ma di segno diverso (vedi figura), sono disposte nei vertici di un quadrato di lato L, come indicato in figura.

Si trovi il modulo, la direzione ed il verso della forza esercitata sulla carica situata nel vertice inferiore sinistro (punto A).

Si calcoli poi l’energia elettrostatica del sistema.

Si risponda quindi alle seguenti domande:

1. il modulo della forza esercitata sulla carica situata nel vertice inferiore sinistro (punto A) vale:

A. 2

2

0 L

q 4 914 1 .

0 πε (*)

B. 2

2

0 L q 4

1 πε

C. 2

2

0 L q 4 5 1 .

0 πε

D. 2

2

0 L q 4 704 1 .

0 πε

2. la forza sulla carica situata nel vertice inferiore sinistro (punto A) A. è diretta da A verso B

B. è diretta da A verso C (*) C. è diretta da A verso D D. è perpendicolare al foglio 3. l’energia elettrostatica del sistema vale:

A. L

q 4

1 2

πε0

B.

(

1 3

)

L q 4

1 2

0

+ πε −

C.

( )

1 2

L q 4

1

2 2

0

πε +

D.

(

4 2

)

L q 4

1 2

0

+

πε − (*)

Esercizio n.2

Un condensatore con armature piane, quadrate e parallele, di lato L e a distanza d l’una dall’alta, inizialmente vuoto, è connesso ad un generatore di forza elettromotrice V. La capacità del condensatore vuoto vale C . 0

Lo spazio tra le armatura del condensatore viene quindi progressivamente riempito con un liquido avente costante dielettrica relativa ε. Con riferimento alle due situazioni illustrate rispettivamente nelle figure A e B, si

determini la capacità del condensatore in funzione dello spessore x dello strato di liquido.

Si risponda quindi alle seguenti domande:

4. La capacità C del condensatore vuoto vale 0

A. 0 0 2

d C =ε L

B. d

L C002

C. 0 0 2

L C =ε d

L

x

d Figura B

ε

+q -q

-q +q

A B

C D

L

x d

Figura A ε

(2)

D. d C L

2 0 0 =ε (*)

5. L’energia elettrostatica del condensatore vuoto vale A. U=C0V

B. C V

2 U= 1 20

C. C0V2

2

U= 1 (*)

D.

0 2

C V 2 U= 1

6. Il condensatore della figura A è equivalente a due condensatori

A. in serie, uno pieno con armature a distanza x ed uno vuoto con armature a distanza d-x (*) B. in serie, uno pieno con armature a distanza d-x ed uno vuoto con armature a distanza x C. in parallelo, uno pieno con armature a distanza x ed uno vuoto con armature a distanza d-x D. in parallelo, uno pieno con armature a distanza d-x ed uno vuoto con armature a distanza x 7. Nel caso della figura A, la capacità del condensatore vale

A. (d x) x

C d

CA 0

+

− ε

= ε (*)

B. (d x) x

C L C

0 0

A ε + −

= ε

C. (d x)

C L C

2 0 0

A ε +

= ε

D. A 0

(

(d 0x) x

)

2

C L

C ε − +

ε

= ε

8. Nel caso della figura B, la capacità del condensatore vale

A. L

d C x CB = 0ε +

B. L

x L C x

CB = 0ε + − (*)

C. (d x) 2x

C L C

2 0 0

B ε + +

ε

= ε

D. L d

x C L

CB 0

+

= −

Esercizio n.3

Una bobina quadrata di 5.0 cm di lato contiene 100 avvolgimenti ed è posizionata perpendicolarmente ad un campo magnetico uniforme B

r

di intensità 0.60 T. La sua resistenza totale vale R=100Ω.

Il campo viene ridotto in maniera uniforme (cioè linearmente) fino ad essere spento in un tempo di 0.10 s.

Calcolare

- la variazione di flusso magnetico concatenato con la bobina nel tempo 0.10 s di spegnimento del campo magnetico

- la fem e la corrente indotte nella bobina durante lo spegnimento del campo magnetico - l’energia dissipata nella resistenza nel tempo 0.10 s di spegnimento del campo magnetico Si trascuri l’autoinduzione.

Rispondere quindi alle seguenti domande:

9. La variazione di flusso magnetico nel tempo 0.10 s di spegnimento del campo vale A. −0.5⋅101 Wb

B. −1.5⋅101Wb (*) C. −2.5⋅101Wb D. −5.5⋅101Wb

10. La fem indotta durante lo spegnimento del campo magnetico ha valore assoluto

A. 1.5 V (*) B. 4.0 V C. 6.5 V

5 cm B

r

(3)

D. 10.5 V

11. La corrente indotta nella bobina durante lo spegnimento del campo magnetico ha intensità A. 5 mA

B. 10 mA C. 15 mA (*) D. 20 mA

12. L’energia totale dissipata nella bobina nel tempo 0.10 s di spegnimento del campo magnetico ha valore A. 0.15⋅103 J

B. 1.08⋅103 J C. 2.25⋅103J (*) D. 5.71⋅103 J Esercizio n.4

Un filo rettilineo indefinito è percorso da una corrente i=20A. Una spira rettangolare, con i lati più lunghi paralleli al filo rettilineo, ha il lato più vicino al filo ad una distanza di d=2 cm da esso. Le dimensioni della spira sono a=5 cm e b=10 cm (vedi figura).

Si calcoli il flusso del campo magnetico concatenato con la spira rettangolare ed il coefficiente di mutua induzione M tra il filo e la spira rettangolare.

Supponendo poi che nella spira rettangolare circoli una corrente di intensità A

5

iS = , in verso antiorario, si trovi la forza risultante che si esercita su di essa.

Si risponda quindi alle seguenti domande:

13. a distanza r dal filo, il campo magnetico B r

generato dalla corrente nel filo rettilineo ha modulo

A. 2 r

B 0i π

= µ (*)

B. 4 r

B 0i π

= µ

C. 02

r 2 B i

π

= µ

D. 02

r 4 B i

π

= µ

14. il flusso del campo magnetico concatenato con la spira rettangolare vale A. 1.01⋅106 Wb

B. 8.84⋅108 Wb C. 5.01⋅107Wb (*) D. 3.22⋅106Wb

15. il coefficiente di mutua induzione M tra il filo e la spira rettangolare vale A. 0.33 Hµ

B. 45.6 Hµ C. 0.025 Hµ (*) D. 85.9 Hµ

16. la forza risultante sulla spira rettangolare percorsa dalla corrente iS =5A vale A. 2.37⋅107 N

B. 5.38⋅106 N C. 1.01⋅106 N D. 7.14⋅105 N (*)

17. la forza risultante sulla spira rettangolare percorsa dalla corrente iS =5A A. è parallela al foglio e va verso destra (*)

B. è parallela al foglio e va verso sinistra C. è perpendicolare al foglio ed è uscente D. è perpendicolare al foglio ed è entrante Altre domande

18. Il potenziale elettrico di un corpo carico rispetto al suolo rappresenta A. La differenza di carica tra il corpo ed il suolo

B. La differenza di corrente tra il corpo ed il suolo

a=

5cm

b=

10 cm d=

2 cm

i=20 A

is

(4)

C. Il lavoro per unità di carica fatto dalle forze del campo per portare la carica dal corpo al suolo (*) D. Il lavoro per unità di carica fatto dalle forze di del campo per portare la carica dal corpo all’infinito 19. La relazione che esiste tra campo elettrico E

r

e potenziale elettrico V è A. V qE

= r

B. V E

r r⋅

= A. Er =−∇rV

(*)

B. V2

2 Er = 1

20. Per dimezzare il modulo della forza che si esercita tra due cariche elettriche dello stesso segno, la distanza tra di esse deve

A. diminuire di un fattore 2 B. diminuire di un fattore 2 C. aumentare di un fattore 2 D. aumentare di un fattore 2 (*)

21. Delle tre costanti dielettriche quale è adimensionale?

A. La costante dielettrica del vuoto B. La costante dielettrica relative (*) C. La costante dielettrica del mezzo D. Tutte

22. La capacità elettrica si misura in Faraday F

A. 1V

C F 1

1 = (*)

B. 1C

V F 1 1 =

C. 1m

V F 1 1 =

D. 1m

C F 1 1 =

23. La capacità di un conduttore sferico isolato di raggio R è A. Direttamente proporzionale ad R (*)

B. Inversamente proporzionale ad R C. Direttamente proporzionale ad R 2 D. Inversamente proporzionale ad R 2

24. Raddoppiando il diametro di un filo conduttore a sezione circolare la sua resistenza A. raddoppia

B. si dimezza

C. Diventa quattro volte più piccola (*) D. Resta invariata

25. Due resistenze R1>R2 sono collegate in parallelo. In esse fluiscono le correnti i ed 1 i rispettivamente. 2 Risulta:

A. i1 =i2 B. i1>i2 C. i1<i2 (*) D.

2 1

2

1 R R

i i

= +

26. Sia f r

la forza di Lorentz agente su una carica positiva che si muove con velocità vr

in un campo magnetico B

r

. Tra le seguenti terne rappresentanti Br,vr, ed f

r

, è corretta la rappresentazione della A. Fig 1

B. Fig 2 C. Fig 3 D. Fig 4 (*)

f r

vr B r

vr

vr

vr

B

r B

r B r f

r

f r

f r

Fig. 1 Fig. 2 Fig. 3 Fig. 4

(5)

27. La fem indotta può essere misurata in

A. s

m Wb

2

B. s Wb (*)

C. C s J⋅

D. Wb C

28. Quali sono i casi in cui non si produce una fem indotta?

A. In un circuito percorso da corrente variabile B. In un circuito percorso da corrente costante (*) C. Durante l’apertura di un circuito percorso da corrente D. Durante la chiusura di un circuito connesso ad un generatore

29. Nel circuito in figura cosa succede se si allontanano le armature del condensatore?

A. Non succede nulla

B. La carica sul condensatore diminuisce e V resta costante (*) C. La carica sul condensatore aumenta e V resta costante D. La capacità diminuisce ed il potenziale V aumenta

30. Quale delle seguenti affermazioni non ha ancora trovato una verifica sperimentale

A. Esistono due tipi di cariche elettriche, quelle positive e quelle negative

B. Le cariche positive e le cariche negative possono essere separate C. Esistono due tipi di poli magnetici, quelli nord e quelli sud D. I poli magnetici nord e sud possono essere separati (*) Soluzioni

Esercizio n.1

Sulla carica nel punto A agiscono le forze rappresentate in figura, la cui somma vettoriale è diretta come la congiungente A-C (il verso è quello da A verso C)

( ) ( )

2 2

0 2

2

0 2

2

0

2 2

0 2

2

0 2

2

0 2

2

0 AC

AD AB A

L q 4 914 1 . L 0 q 4

1 2

1 2 2 L q 4

1

L 2

q 4

1 2

2 L q 4 2 1 2 L

q 4

1 cos4 L q 4 2 1 F F F F

= πε

= πε





 −

= πε

πε = πε −

πε = π−

= πε + +

= r r r

r

L’energia elettrostatica del sistema di cariche è

(

4 2

)

L q 4

1 2

2 4 2 L q 4

1 2 4 2 L q 4

1

L q 4

1 2 L

q 4

1 L q 4

1 L q 4

1 2 L

q 4

1 L q 4 U 1

2

0 2

0 2

0

2

0 2

0 2

0 2

0 2

0 2

0

+ πε −

=



− +

= πε





− + πε

πε = πε −

πε + πε −

πε − πε +

=

Esercizio n.2

La capacità del condensatore vuoto vale

d C L

2 0

0=ε e l’energia in esso immagazzinata è C0V2 2 U= 1

Nel caso della figura A, il condensatore equivale a due condensatori in serie, uno avente distanza x tra le armature e riempito di liquido, l’altro vuoto e con distanza tra le armature d-x.

Quindi:

x ) x d ( C d x ) x d (

d d C L

x L 1 x d

L 1 C

1

0 2

0 2 A

0 2

A 0 ε − +

= ε +

− ε ε ε

= ε ⇒

+ ε

= ε

Nel caso della figura B, il condensatore equivale a due condensatori in parallelo, per cui

( )

L x L C x d

x L L d

CB0εxL+ε0 − = 0ε + − Esercizio n.3

+q -q

-q +q

A B

C D

V

C

R

(6)

All’istante t=0, quando inizia lo spegnimento del campo magnetico, il flusso magnetico attraverso la bobina vale

( )

0s =BAN=

(

0.60T

) (

0.050m

)

2100=1.5101Wb=0.15Wb

Φ

dove A è l’area della bobina e N il suo numero di spire.

All’istante t=0.10s, il campo magnetico è nullo e tale è anche il flusso magnetico attraverso la bobina

(

0.10s

)

=BAN=0 Φ

La variazione di flusso è quindi

(

0.10s

) ( )

−Φ0s =−1.5101Wb Φ

=

∆Φ

La rapidità di variazione di flusso è costante durante i 0.10 s, quindi la fem indotta durante questo periodo ha valore assoluto

( ) ( )

1.5V

s Wb 10 . 0

10 5 . 1 s

10 . 0

s 0 s 10 . 0 t

1

⋅ = Φ =

= Φ

= ∆Φ

ξ

La corrente indotta vale di conseguenza

mA 100 15

V 5 . 1

I R =

= Ω

= ξ

L’energia totale dissipata nella bobina, nel tempo ∆t=0.10sdi spegnimento del campo magnetico vale

(

1.5 10 A

) (

100

)(

0.10s

)

2.25 10 J

t R I Pt

U= = 2 ∆ = ⋅ 2 2 Ω = ⋅ 3

Esercizio n.4

Il campo magnetico del filo ha espressione

r 2 B 0i

π

= µ , dove r è la distanza dal filo, e in corrispondenza della spira è

perpendicolare al foglio ed entrante. Il valore assoluto del flusso di tale campo attraverso la superficie delimitata dalla spira rettangolare vale

Wb 10 01 . 5 Tm 10 01 . 5

2 ln7 m 10 . 0 A A 20 Tm 2

10 4 d

a lnd 2 b

i

dy rdr 2 dy i rdr 2 A i d B

7 2

7

7 0

a d

d b

0 0 a

d

d b

0 0 AREASPIRA

B

+ +

=

=

=

⋅ π ⋅

= π + π

π =

= µ π

= µ

=

Φ

r r

∫∫ ∫ ∫

Il coefficiente di mutua induzione tra il filo rettilineo indefinito e la spira rettangolare vale

H 025 . A 0

20 Tm 10 01 . 5 M i

2 7

B = ⋅ = µ

= Φ

Quando nella spira circola la corrente i , in verso antiorario, sulla spira S agiscono le forze rappresentate dalle frecce nella figura. Sui lati della spira ortogonali al filo rettilineo agiscono forze uguali in modulo e direzione ed opposte in verso; sui lati della spira paralleli al filo rettilineo agiscono invece forze di intensità diversa, l’una – quella con modulo maggiore - diretta verso destra, l’altra diretta verso sinistra. La spira viene quindi respinta con una forza risultante verso destra, il cui modulo vale

( )

N 10 14 . s 7 mC Cm 10 Ns 14 . 7 TmA 10 14 . 7

m 07 . 0

1 m 02 . 0 A 1 A 20 Tm 2

10 m 4 10 . 0 A 5

a d

1 d 1 2 b i a i d 2 b i d i 2 b i i F

5 5

5

7

0 S 0 S 0 S

=

=

=

=



 

 −

π

⋅ π

=

=



 

− + π

= µ + π

− µ π

= µ

i=20 A

iS r

y

Riferimenti

Documenti correlati

Piano della spira perpendicolare alle linee di forza del campo B: tutti e 4 i lati sono soggetti a forze dirette verso l’esterno della spira..

Proprietà degli angoli: la somma degli angoli interni di qualsiasi quadrilatero è uguale a 2 angoli piatti, quindi

Si misura l’intensità nel punto P: tutte le sorgenti misurate singolarmente hanno la stessa intensità I0; se sono accese solo S1 e S2 l’intensità è I = 100 mW/m2; se sono

NB Si rammenti che se questo eserczio ` e sbagliato non si supera l’esame scritto indipendentemente da come sono stati svolti gli altri esercizi, quindi leggete attentamente quello

Un triangolo isoscele ha la base di 34 cm e il lato obliquo misura 10 cm in meno della base... COMPLETA LA DESCRIZIONE DEI TRIANGOLI CLASSIFICATI SECONDO

Esercizio 7: Si consideri il sistema in figura: un filo rettilineo infinito `e percorso da una corrente I 1 e si trova nello stesso piano di una spira rettangolare di lati a e

Calcolare modulo e direzione della forza risultante che e’ esercitata sulla spira rettangolare dal filo rettilineo indefinito.. Rispondere quindi alle

Calcolare modulo e direzione della forza risultante che e’ esercitata sulla spira rettangolare dal filo rettilineo indefinito.. Rispondere quindi alle