Sorgenti Naturali di Sorgenti Naturali di
Radiazioni Radiazioni
Dott. Filippo Russo
Dott. Filippo Russo
Concetto di Radiazione Concetto di Radiazione
In generale si parla di radiazioni tutte le volte che esiste una cessione di energia tra un
corpo ed un altro senza che vi sia un contatto diretto o mediato.
Concetto di Radiazione Concetto di Radiazione
Con l’espressione RADIAZIONI si descrivono fenomeni fisici quali, p.e.
La luce (radiazione luminosa)
Il calore (radiazione termica) percettibili dai sensi umani,
La radiazione elettromagnetica (la radiazione cosmica, le radiazioni ionizzanti, le radiazioni non ionizzanti)
L'assorbimento di energia si manifesta in genere in un aumento locale di temperatura ovvero con la produzione di fenomeni fisici, chimici o biologici.
La Radioattività La Radioattività
Si definisce Radioattività la proprietà che
hanno gli atomi di alcuni elementi di emettere spontaneamente radiazioni
La Radioattività La Radioattività
La radioattività non é stata inventata ma scoperta dall'uomo!
Gli esseri viventi, dalla loro apparizione sulla Terra, sono immersi in un vero e proprio bagno di radioattività.
Un chilogrammo di granito ha una radioattività naturale di circa 1000 Becquerel
Un litro di latte ha una radioattività naturale di circa 80 Becquerel
Un litro di acqua di mare ha una radioattività naturale di circa 10 Becquerel
Un individuo di 70 kg ha una radioattività dell'ordine di 8000 Becquerel, causata dalla presenza, nel corpo umano, di isotopi
radioattivi naturali (in gran parte, potassio-40)
 Henry Becquerel Parigi 15.12.1852 - Croisic 25.8.1908
Nel 1896 Henri Becquerel, indagando sui fenomeni di luminescenza di
alcuni materiali, correlò
l’annerimento di una lastra
fotografica lasciata vicino a minerali d’uranio agli esperimenti ed alle
radiografie effettuate da
Wilhelm Conrad Roentgen 1845-1923
Becquerel notò altresì che tali raggi scaricavano rapidamente i corpi
elettricamente carichi p.e. le foglie d'oro di un elettroscopio. Due anni più tardi Marie
Curie, proseguendo gli studi iniziati da
Becquerel, scoprì che anche altre sostanze godevano della stessa proprietà dell'uranio p.e. il Th e suggerì di chiamare tali sostanze radio (radium = raggio) attive.
Separò il polonio e il radio la cui radioattività risultava rispettivamente 400 e 1.000.000 di volte superiore a quella dei sali di uranio puri e riuscì a stabilire la natura dei raggi emessi scoprendo che trattava di 3 tipi di radiazioni:
la prima elettricamente carica negativamente, la seconda carica positivamente e la terza
neutra. Associò a tali raggi le prime tre lettere dell'alfabeto greco (alfa), (beta), 
(gamma).
Radiazioni Ionizzanti Radiazioni Ionizzanti
 Le radiazioni si dicono ionizzanti quando hanno energia sufficiente per produrre il fenomeno fisico della ionizzazione che consiste nel far diventare un atomo
elettricamente carico (ione).
 Un gas ionizzato è un conduttore
Nei tessuti biologici gli ioni generati dalle radiazioni ionizzanti possono avere influenza sui normali processi biologici.
Gli effetti biologici indotti dalle radiazioni possono avere caratteristiche molto diverse anche a parità di dose fisica; per valutare il danno biologico é quindi necessario
conoscere anche il tipo e l’energia delle radiazioni che deposita la dose.
Dose
dE dE dm dm D = D =
1J 1J 1 kg 1 kg 1 Gy =
1 Gy = = 100 rad = 100 rad
dN dN dt dt
= = A A
L’attività L’attività
A = -
A = -   N N
Dove N è il numero dei nuclei radioattivi al tempo t e  è la“costante di decadimento“ . .
In generale la legge del decadimento è
dN dN
dt dt
= =- -   N N
N = N (0) e - t
La relazione ha come soluzione
Henri Becquerel fu il primo Henri Becquerel fu il primo
uomo a contrarre una uomo a contrarre una malattia da radiazioni malattia da radiazioni Marie Curie fu il primo Marie Curie fu il primo essere umano morto per essere umano morto per
una malattia (
una malattia ( diagnosticata diagnosticata
DECADIMENTO DECADIMENTO
RADIOATTIVO RADIOATTIVO
Il decadimento radioattivo è un processo per cui un nucleo radioattivo di un elemento o radionuclide si trasforma nel nucleo di un
elemento diverso o raggiunge uno stato energetico minore, emettendo radiazioni
ionizzanti.
Si distinguono: d.r. alfa (); d.r. beta (
positivo o negativo; d.r. per cattura elettronica; d.r. gamma (; d.r. per
conversione interna. I d.r. e. danno origine a flussi di particelle noti,
rispettivamente, come radiazioni (o raggi)
e.
DECADIMENTO RADIOATTIVO
DECADIMENTO RADIOATTIVO
Tempo di vita medio Tempo di vita medio
 
..“Tempo di dimezzamento”
Ln 2 Ln 2 T T
1/21/2= =  
  = = 1 1  
Numero di massa – Numero Atomico Numero di massa – Numero Atomico
 Sappiamo che ogni atomo è
caratterizzato dal numero atomico Z, che rappresenta il numero di protoni nel nucleo (uguale al numero degli elettroni dell'atomo neutro) e dal numero di
massa A che rappresenta il numero di nucleoni (protoni e neutroni) del nucleo.
E' sempre A Z
ISOTOPI ISOTOPI
Molti elementi hanno massa atomica (da non
confondere col numero di massa!) non sempre vicina all'unità (per esempio Cl 35.45; H 1.008; Ni 58.71...).
Ciò è dovuto alla possibilità di esistenza di nuclei con eguale Z (perciò chimicamente eguali) e diverso A (perciò con diverso numero di neutroni nel nucleo).
Questi nuclidi di uno stesso elemento si chiamano isotopi.
isotopi (dal greco  = eguale posto, nella tavola periodica, dato che si tratta di
atomi con lo stesso nome), con eguale Z ed A diverso (per esempio 11H, 21H; oppure 126C,
136C) , che per noi chimici sono i più importanti isobari: (dal greco  = con lo stesso
peso), con Z diverso, (perciò chimicamente diversi) ed A uguale (4018Ar, 4019K, 4020Ca)
isotoni: (con lo stesso numero di neutroni), cioè
Nella figura sono riportati, in funzione di Z e di A,
tutti i nuclidi stabili,
cioè tutti quelli riscontrati in natura; mancano perciò quelli artificiali e quelli
radioattivi; in particolare si può notare la mancanza di Z=43 (tecnezio Tc) e di
Z=61 (promezio Pm), artificiali, benché a Z
relativamente basso (ma dispari per ambedue). Il grafico si ferma a Z=83 (bismuto Bi), poiché tutti i nuclidi con Z>83 sono
 Gli atomi di uno stesso elemento, pur avendo lo stesso numero di protoni, possono avere diverso numero di neutroni, dando origine ai diversi
"isotopi". Essi sono identificati dal numero totale di particelle presenti nel nucleo. Ad esempio,
l'uranio (simbolo U) ha vari isotopi: U-238, U-
235, U-233. L'uranio-238 ha 92 protoni e (238-92)
= 146 neutroni; l'uranio-235 ha sempre 92 protoni, ma (235-92) = 143 neutroni; l'uranio-233 ha 92
protoni e 141 neutroni.
 L'elemento più semplice esistente in natura
l'idrogeno (H-1) ha due isotopi: il deuterio (H-2) e il tritio (H-3). Quest'ultimo è radioattivo ed emette particelle beta negative. In generale un isotopo il cui simbolo sia Y è caratterizzato dal numero
atomico Z, pari al numero dei protoni e degli
elettroni, dal numero di massa A, pari al numero totale di particelle presenti nel nucleo e dal
numero N = A-Z pari al numero di neutroni. Se l'isotopo è radioattivo, si parla di radioisotopo o anche di radionuclide.
DECADIMENTO DECADIMENTO 
Il decadimento
Il decadimento  viene sinteticamente viene sinteticamente espresso tramite la formula:
espresso tramite la formula:
XXAAZZ  YY A-4A-4Z-2Z-2 + +  ( Z , A )
( Z , A )  ( Z – 2 , A – 4 ) + ( Z – 2 , A – 4 ) + 44 22HeHe
Decadimento alfa
Un nucleo di un elemento di numero atomico Z e di massa atomica (o peso atomico) A emette una particella alfa (),
corrispondente al nucleo dell'elio (due protoni p e due neutroni n), trasformandosi nel nucleo dell'elemento con numero
atomico Z-2 e peso atomico A-4.
decadimento : un nucleo di radio si trasforma in rado emettendo un fotone e una particella alfa.
Il decadimento
Il decadimento  è possibile  è possibile per nuclei con A >150 in per nuclei con A >150 in questo caso la costante di questo caso la costante di decadimento
decadimento  dipende dipende dall’energia cinetica e ciò dall’energia cinetica e ciò viene correlato nelle legge di viene correlato nelle legge di Geiger-Nuttal
Geiger-Nuttal
Log Log  = B Log R = B Log R  - c - c
Decadimento beta
Nel d.r. beta negativo (, un neutrone emette un elettrone e-, trasformandosi in un protone e facendo diventare il nucleo originario di numero atomico Z un nucleo dell'elemento di numero atomico Z+1; nel d.r. beta positivo ( si ha invece l'emissione di un positrone e+ (elettrone positivo) da parte di un protone, che diviene neutrone e trasforma il nucleo in uno
dell'elemento di numero atomico Z-1; in entrambi i d.r. beta la massa atomica non cambia poichè la massa dell'elettrone è
molto minore di quella del protone e del neutrone; elettroni e positroni provenienti da un nucleo per d.r.  sono detti
particelle beta ().
DECADIMENTO DECADIMENTO ββ
Decadimento beta Decadimento beta
 decadimento 
negativo: un neutrone si traforma in protone emettendo un fotone, un elettrone e un
neutrino (che contribuisce a
conservare la quantità
Decadimento gamma Decadimento gamma
 E' associato ai d.r.  e e avviene quando il
nucleo si porta su un livello di energia inferiore grazie all'emissione di un fotone  (di energia tra 10 keV e 10 MeV, maggiore dei raggi X); il
numero atomico e la massa atomica non variano
DECADIMENTO DECADIMENTO 
I raggi γ sono radiazioni
I raggi γ sono radiazioni
Decadimento per cattura Decadimento per cattura
elettronica elettronica
 Avviene quando un nucleo cattura un
elettrone di un livello energetico interno,
facendo diminuire di 1 il numero atomico del nucleo stesso con l'emissione di un raggio X, a causa del riassestamento degli elettroni
rimasti
Decadimento per Decadimento per conversione interna conversione interna
 Avviene quando un elettrone assorbe l'energia emessa dal nucleo e sfugge
all'atomo; il numero atomico e la massa non cambiano.
Principali fonti di esposizione alle radiazioni ionizzanti
Radon -
56% Medicina nucleare - 4%
Raggi
cosmici -8% Interne - 10%
Terreno -8% Altro - 1%
Prodotti di consumo
-3% Radiografie - 10%
 Famiglie radioattive
Il nucleo figlio generato dalla produzione di un decadimento
radioattivo di tipo  o  da un genitore pesante può però non essere comunque stabile e decadere ulteriormente finché non raggiunge
un isotopo stabile . in natura esistono degli isotopi che danno luogo a processi seriali accompagnati da emissioni  e  e spesso anche da emissioni . Gli elementi in questione hanno un numero atomico che va da 82 a 95, ed assieme ai loro figli sono catalogati nelle cosiddette serie o famiglie radioattive
Gli isotopi radioattivi naturali possono essere raggruppati in 3 famiglie, con un capostipite da cui prendono il nome; poiché le emissioni che portano a variazione di A (oltre che di Z) sono le , ogni isotopo avrà A con differenza di 4 rispetto al predecessore:
avremo così le seguenti famiglie, identificabili, oltre che col nome del capostipite, con una espressione algebrica che esprime il
numero di massa di ogni membro della famiglia con n variabile (per semplicità saranno indicati solo i numeri di massa; Z è
comunque identificato dal simbolo dell'elemento):
(4n+2) del Torio 234: 234Th, 234Pa, 234U, 230Th, 226Ra, 222Rn, 218Po, 218At, 214Pb, 214Bi, 214Po, 210Ti, 210Pb, 210Bi, 210Po, 206Ti, 206Pb.
(4n) del Torio 232: parte da 232Th e termina con 208Pb.
(4n+3) dell'Uranio 235: parte da 235U e termina con 207Pb.
E' interessante notare che tutte queste tre famiglie terminano con un isotopo del Pb, elemento che è evidentemente molto stabile; ricordando le tabelle
dell'abbondanza di nuclidi (figg. 11.3, 11.5, 11.6), Pb ha Z=82, pari.
Manca però, in natura, una serie, quella (4n+1).
Evidentemente non esiste più un capostipite di questa famiglia, perciò essa deve essersi esaurita. La serie però può essere considerata a partenza da un elemento
artificiale
Famiglie Radioattive Naturali Famiglie Radioattive Naturali
ed ed Artificiali Artificiali
 SERIE DELL’URANIO
 SERIE DEL TORIO
 SERIE DELL’ATTINIO
 SERIE DEL NETTUNIO
Ognuna delle serie considerate presentano un elemento gassoso mentre tutti gli altri sono solidi e termina con un elemento stabile che è un isotopo del piombo, ad eccezione della serie del nettunio (artificiale) che non ha nuclidi gassosi e che termina con un isotopo del bismuto
SERIE DELL’URANIO Il capostipite di questa serie è l’ 238U che emette  trasformandosi in 234Th. L’elemento gassoso è il
222Rn ( Radon ). L’elemento stabile della serie è 206Pb.La serie è
detta “4n+2” poiché il numero di massa dei suoi membri può essere ricavato da questa relazione.
Famiglia del Th 234 Famiglia del Th 234
 (4n+2) del Torio 234: 234Th, 234Pa, 234U,
230Th, 226Ra, 222Rn, 218Po, 218At, 214Pb, 214Bi,
214Po, 210Ti, 210Pb, 210Bi, 210Po, 206Ti, 206Pb.
SERIE DEL TORIO Il capostipite è il 232Th che emette  trasformandosi in 228Rn. L’elemento gassoso è il 220Rn-
220(Thoron).L’elemento stabile della serie è il 208Pb (Thorium D). La serie è detta “4n”
SERIE DELL’ATTINIO Il capostipite è l’235U che decade 
trasformandosi in 231Th . L’elemento stabile della serie 207Pb (Actinium D) . La serie è detta “ 4n+3”
SERIE DEL NETTUNIO Il capostipite è il 241Pu ( che viene creato
artificialmente ) che emette β dando 241Am. L’elemento stabile è 209Bi. La serie è detta “4n+1”.