• Non ci sono risultati.

Prove 4860 Z 1 0 f (x)dx 2 ≤11 Z 1 0 (f′′(x))2dx

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove 4860 Z 1 0 f (x)dx 2 ≤11 Z 1 0 (f′′(x))2dx"

Copied!
1
0
0

Testo completo

(1)

Problem 11946

(American Mathematical Monthly, Vol.123, December 2016) Proposed by M. Omarjee (France).

Letf be a twice differentiable function from [0, 1] to R with f′′continuous on[0, 1] andR2/3

1/3 f (x)dx = 0. Prove

4860

Z 1

0

f (x)dx

2

≤11 Z 1

0

(f′′(x))2dx.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let g(x) be the piecewise differentiable function defined as

g(x) :=

x if x ∈ [0, 1/3), 1 − 2x if x ∈ [1/3, 2/3), x − 1 if x ∈ [2/3, 1), and let

G(x) :=

Z x 0

g(t)dt =

x2

2 if x ∈ [0, 1/3),

−x2+ x −16 if x ∈ [1/3, 2/3),

x2

2 −x + 12 if x ∈ [2/3, 1).

SinceR2/3

1/3 f (x) dx = 0, it follows that Z 1

0

f (x) dx = Z 1/3

0

f (x) dx − 2 Z 2/3

1/3

f (x) dx + Z 1

2/3

f (x) dx = Z 1

0

f (x)g(x) dx.

Hence, by integrating by parts, we obtain Z 1

0

f (x) dx = Z 1

0

f (x) d(g(x)) = [f (x)g(x)]10− Z 1

0

g(x) d(f (x)) = − Z 1

0

g(x)f(x) dx

= − Z 1

0

f(x) d(G(x)) = − [f(x)G(x)]10+ Z 1

0

f′′(x)G(x)dx = Z 1

0

f′′(x)G(x)dx.

Finally, by Cauchy-Schwarz inequality, we get

Z 1

0

f (x) dx

2

≤ Z 1

0

(G(x))2dx · Z 1

0

(f′′(x))2dx = 11 4860

Z 1

0

(f′′(x))2dx because

Z 1

0

(G(x))2dx = 2 Z 1/3

0

x4 4 dx + 2

Z 1/2 1/3



−x2+ x − 1 6

2

dx = 11 4860.



Riferimenti