• Non ci sono risultati.

Prove 30240 Z 1 0 xf(x) dx 2 ≤ Z 1 0 (f′′(x))2dx

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove 30240 Z 1 0 xf(x) dx 2 ≤ Z 1 0 (f′′(x))2dx"

Copied!
1
0
0

Testo completo

(1)

Problem 12229

(American Mathematical Monthly, Vol.128, January 2021) Proposed by M. Omarjee (France).

Let f: [0, 1] → R be a function that has a continuous second derivative and that satisfies f (0) = f (1) andR1

0 f(x) dx = 0. Prove

30240

Z 1

0

xf(x) dx

2

≤ Z 1

0

(f′′(x))2dx.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. By integrating by parts twice, we have that 12

Z 1

0

xf(x) dx = 12 Z 1

0

xf(x) dx − 6 Z 1

0

f(x) dx = Z 1

0

(12x − 6)f (x) dx = Z 1

0

f(x) d(6x2−6x + 1)

=(6x2−6x + 1)f (x)1

0− Z 1

0

(6x2−6x + 1)f(x) dx

= (f (1) − f (0)) − Z 1

0

(6x2−6x + 1)f(x) dx

= − Z 1

0

f(x) d((2x3−3x2+ x))

= −(2x3−3x2+ x)f(x)1

0+ Z 1

0

(2x3−3x2+ x)f′′(x) dx

= Z 1

0

(2x3−3x2+ x)f′′(x) dx.

Hence, by Cauchy-Schwarz inequality,

 12

Z 1

0

xf(x) dx

2

≤ Z 1

0

(2x3−3x2+ x)2dx · Z 1

0

(f′′(x))2 dx.

Finally, sinceR1

0(2x3−3x2+ x)2dx=2101 , and 122·210 = 30240, it follows that 30240

Z 1

0

xf(x) dx

2

≤ Z 1

0

(f′′(x))2dx.



Riferimenti