• Non ci sono risultati.

La produzione di film cinematograficicon l'ausilio della televisioneIl film elettronico ad alta definizione

N/A
N/A
Protected

Academic year: 2022

Condividi "La produzione di film cinematograficicon l'ausilio della televisioneIl film elettronico ad alta definizione"

Copied!
4
0
0

Testo completo

(1)

fica, su uno schermo di pari dimensioni.

Se lo schermo è più piccolo, la solu- zione è, naturalmente, più agevole, tanto che, se l'accorgimento più delicato, che è quello della direttività dello schermo, viene omesso, si possono ancora otte- nere dei risultati soddisfacenti.

Effettivamente, il valore assunto per la luminosità (10 ft-lambert) è un va- lore ottimo sul quale è ancora possibile praticare una forte riduzione senza ren- dere lo spettacolo inutilizzabile. Pre- scindendo dalle citate dimostrazioni in- glesi del 1939 in cui, il pubblico si en- tusiasmò ad una proiezione, effettuata con ottica refrattiva, che dava una lu- minosità massima di appena un ft-lam- bert, è sempre, purtroppo, un dato di fatto che molte delle attuali sale cine- matografiche non superano i quattro ft-lambert sullo schermo. È quindi com- prensibile come possano ancora essere qualificati buoni dei risultati alquanto lontani dalle prestazioni massime su cui è basata la precedente discussione.

La prima proiezione con ottica Schmidt fu effettuata nel 1941 dalla RCA al New Yorker Theater, su uno schermo di 15 x 20 piedi. Il tubo di proiezione aveva un diametro di 7 pol- lici ed era alimentato a 65 kV; l'ottica Schmidt aveva uno specchio sferico di 31" e una lente asferica di 22,5 pollici.

Lo schermo era direttivo con guadagno due. Lo sviluppo di questa tecnica fu interrotto dalla guerra, e solo in tempi recenti, sono stati resi disponibili per la clientela impianti completi di proie- zione istantanea con ottica Schmidt. Il primo impianto disponibile nel 1948 aveva un proiettore da 7", uno specchio da 21", e una lente di 14,5"; il tubo operava a 50 kW; lo schermo consigliato era 6x8 piedi. Contemporaneamente, la RCA mise in produzione, per conto della XXth Century Fox, il prototipo di un proiettore « gigante » con specchio di 42", e lente Schmidt da 30 pollici, capace di dare su uno schermo di 18 x 24 una luminosità di 7 a 14 ft-lambert. La meta era quindi raggiunta sia pure con una spesa non indifferente, dato il limi- tato numero di esemplari (due impianti erano in grado di funzionare nel 1948).

Particolarmente costosa è la costruzione delle lenti asferiche in vetro, quali fu- rono adottate per l'impiego nei due pro- totipi; potendo contare sulla possibilità di collocamento di un maggior numero di esemplari, le lenti asferiche possono essere modellate in materiale plastico (come si fa per i ricevitori domestici a proiezione) ad un costo enormemente inferiore.

L'impianto costruito attualmente dalla RCA è il PT-100 (15). Il tubo è il già citato 7NP4, alimentalo a 80 kW, lo specchio è di 26", la lente di 22".

La proiezione avviene alla distanza di 62 piedi (19 metri circa). L'impianto Simplex PB-600 (16) ha caratteristiche sostanzialmente analoghe ed impiega lo stesso tubo.

(15) R. V. LITTLE, Jr., The RCA PT-100 Theater Television Equipment, SMPTE, vol.

56, n. 3, pp. 317-331, marzo 1951.

(16) F. N. GILLETTE, A Direct-Projection System for Theater Television, SMPTE, vol. 58, n. 5, pp. 385-396, maggio 1952.

L'ottica asferica, progettata da Louis Raitière del General Precision Labora- tory, partendo da concetti informatori diversi da quelli di Schmidt, differisce, a quanto riportato nell'articolo citato, in misura assai piccola, ma apprezza- bile, dalla ordinaria ottica di Schmidt.

Per quanto concerne lo standard di riproduzione, si è detto che la proie- zione su grande schermo richiede, se la qualità deve essere paragonabile con quella cinematografica, una definizione superiore a quella degli standard nor- mali. Mentre lo standard normale ame- ricano (525/30) occupa, notoriamente, una banda video di 4,25 Mc, il sistema PT-100 della RCA prevede il tratta- mento di un segnale video di 8 Mc. Il numero di righe che, con questa lar- ghezza di banda, consente una defini- zione uguale nei due sensi, orizzontale e verticale, potrebbe essere 675, mentre per la cadenza di quadro potrebbe adot- tarsi il valore cinematografico di 24.

L'Eidophor.

L'unico sistema di proiezione istan- tanea che, anzichè utilizzare come sor- gente di luce il tubo catodico, permette la modulazione di una sorgente qual- siasi è, come si è detto, (ed escludendo il sistema Scophony), l'Eidophor, posto allo studio in Svizzera dal Prof. Fischer.

Dopo la morte del Prof. Fischer, lo studio è oggi continuto dal Prof. Bau- mann (17) nella stessa sede dell'Eidge- nössischen Technische Hochschule di Zurigo. Il procedimento è basato su una disposizione ottica alquanto delicata, di cui cercheremo di fornire una rapida descrizione, rinviando al citato articolo di H. Thiemann e all'articolo di E. La- bin in SMPTE, aprile 1950, per maggiori particolari. La luce della sorgente lo- cale è condotta sullo schermo attraverso due obbiettivi (disposti uno dopo l'al- tro nel cammino ottico) fra i quali è di- sposta una lastra trasparente speciale, che è l'eidophor propriamente detto. Il secondo obbiettivo porta a fuoco sullo schermo appunto la superficie dell'ei- dophor.

Fra la sorgente e il primo obbiettivo è disposto un reticolo a striscie paral- lele, di cui il primo obbiettivo forma un'immagine, attraverso l'eidophor, in un piano compreso fra l'eidophor stesso e il secondo obbiettivo ; in questo piano è disposto un secondo reticolo, collocato in modo che, quando l'eidophor è in condizioni normali, le striscie opache del secondo reticolo coincidano con le immagini delle striscie chiare del primo.

In tal modo, la luce della sorgente è completamente bloccata nel suo tragitto verso lo schermo, e quest'ultimo appare nero.

Supponiamo ora che la superficie del- l'eidophor venga localmente deformata in un punto, in modo da deviare i raggi luminosi passati per il punto stesso. I raggi uscenti delle striscie chiare del primo reticolo, e che attraversano l'ei- dophor in questo punto subiscono quindi una deviazione anormale che

(17) H. THIEMANN, Fernsehgrossproiektion nach dem Eìdophorverfahren, Bull. des Schwei- zerischen Elektr. Vereins, vol. 40, n. 17, pp. 585-594, agosto 1949.

permette loro di attraversare la seconda griglia, e raggiungere quindi lo schermo.

Poichè l'immagine dell'eidophor è a fuoco sullo schermo, il punto conside- rato appare illuminato sullo schermo stesso. Si tratta in sostanza del noto pro- cedimento della « Schlierenoptik ».

Resta ora da vedere come possa essere costituito l'eidophor e come possano in- trodursi in esso le deformazioni ottiche in relazione con l'immagine televisiva.

Gli ideatori costituiscono l'eidophor con uno strato liquido molto viscoso, depo- sto su una lastra di cristallo piano-paral- lela. La faccia superiore del cristallo (inferiore del liquido) è metallizzata, in strato cosi sottile da risultare traspa- rente; un pennello catodico esplora la faccia superiore del liquido e vi depo- sita delle cariche elettriche che, in pre- senza della metallizzazione inferiore, de- terminano una compressione elettrosta- tica del liquido stesso.

Si supponga che il pennello elettronico sia modulato in intensità secondo una alta frequenza portante modulata a sua volta in ampiezza dal segnale visivo; ad esempio, di ampiezza nulla nei neri e massima nei bianchi. In corrispondenza di una zona nera il pennello ha quindi intensità costante e ad ogni passaggio depone sull'eidophor una carica unifor- memente distribuita che determina una compressione uniforme del liquido. La conseguente deformazione si rilascia poi esponenzialmente, fra un passaggio e l'altro, in conseguenza del rilasciamento elettrico dovuto alla conduttività del li- quido e del rilasciamento meccanico do- vuto all'elasticità e alle resistenze vi- scose. In una zona bianca, al contrario, il pennello deposita una distribuzione sinusoidale di cariche con passo uguale allo spazio percorso del pennello in un periodo della modulante; in conse- guenza delle forze elettrostatiche, l'eido- phor assume perciò una deformazione periodica tanto più profonda quanto maggiore è l'intensità del segnale visivo, cioè l'illuminazione.

Il liquido deformato periodicamente si comporta di fronte ai raggi che lo attraversano come un reticolo di diffra- zione. La luce incidente viene quindi divisa in fasci di cui quello centrale è indeviato, mentre i laterali sono deviati secondo i multipli di un angolo deter- minato soltanto dalla lunghezza d'onda e dal passo del reticolo (che è costante).

La percentuale di luce deviata cresce con l'ampiezza di modulazione. Per co- struzione i due reticoli posti rispettiva- mente a monte e a valle dell'eidophor sono collocati in modo tale che le stri- scie opache del secondo blocchino to- talmente la luce che ha attraversato le zone chiare del primo con l'eidophor in condizioni normali. Ma, nei punti in cui l'eidophor è deformato, cioè nei bian- chi, una porzione più o meno grande della luce è deviata nei fasci laterali, particolarmente nei fasci di primo or- dine che per costruzione possono attra- versare la seconda griglia. I punti del- l'eidophor più o meno profondamente modulati appaiono dunque più o meno bianchi sullo schermo, su cui viene quindi ricostruita l'immagine.

Si dimostra che le condizioni migliori si hanno quando la costante di tempo

del rilasciamento elettrostatico uguaglia quella del rilasciamento meccanico ; e la costante di tempo complessiva deve es- sere tale che la deformazione si man- tenga più a lungo possibile (in modo da consentire l'accumulazione della luce) ma sia totalmente annullata in un periodo di quadro. Il pennello elettro- nico deve generare uno « spot » di forma rettangolare, all'incirca, con rapporto 1:4 o 1:5 col lato minore nella dire- zione del moto; il lato maggiore ugua- glia lo spessore di una riga. Per evitare distorsioni che sarebbe troppo compli- cato descrivere (e per cui si rimanda alle memorie originali) il pennello non è modulato in intensità; al contrario, la corrente di pennello è tenuta costante, e il segnale completo (portante modu- lata del segnale visivo) viene impiegato a modulare la velocità di deflessione del pennello, essendo sovrapposto al se- gnale di deflessione normale. La depo- sizione della carica « a densità varia- bile » sull'eidophor avviene quindi in modo analogo ad una registrazione so- nora a valvola di luce (Western).

La piastra portante l'eidophor è tenuta in rotazione lentissima per consentirne il raffreddamento. A tale scopo essa è per metà coperta da una piastra semi- circolare di metallo raffreddata da cir- colazione d'acqua; uscendo dalla pia- stra essa viene « piallata » da un bordo tagliente situato in corrispondenza del semidiametro di uscita. Tutto il com- plesso è, naturalmente, sotto vuoto spinto; il pennello catodico, che è dallo stesso lato dell'obbiettivo di uscita, è deviato come nell'iconoscopio, e quindi la deflessione deve essere corretta per la distorsione trapezia. Una pompa a vuoto è costantemente in funzione du- rante l'esercizio.

Il liquido costituente l'eidophor, oltre ad avere i requisiti di viscosità, elasti- cità, costante dielettrica, e conduttività volumetrica richiesti deve anche avere una bassissima tensione di vapore (dato che lavora sotto vuoto) e deve resistere chimicamente al bombardamento elet- tronico.

Il prototipo dell'eidophor costruito dal Prof. Fischer aveva dimensioni enormi. Il diametro era circa m. 1,80 e l'altezza era tale da occupare due piani di uno stabile. Attraverso lo studio di un sistema ottico più compatto, le di- mensioni dei futuri esemplari saranno sensibilmente ridotte e paragonabili a quelle di un proiettore ordinario da pel- licola, a parte il peso (900 kg.). L'appa- recchio potrà allora essere installato nella cabina di proiezione, e in questo potrà costituire un notevole progresso di fronte ai proiettori a tubo catodico che debbono di necessità essere instal- lati in sala (dove possono, fra l'altro, costituire un pericolo, date le alte ten- sioni impiegate). L'altro punto di van- taggio dovrebbe essere nella maggiore disponibilità di luce, dato che la luce, generata da una lanterna ad arco, è li- mitata soltanto dal riscaldamento del- l'eidophor, e dato che la proiezione perdura per tutto il tempo di rilascia- mento.

Come per tutti i metodi di proiezione diretta sussiste per l'eidophor l'incon-

veniente già osservato della impossibilità di ripetere la proiezione, e della con- temporaneità di questa con la trasmis- sione televisiva.

A parte i due sistemi di modulazione diretta (l'Eidophor, non ancora com- merciale, e lo Scophony, che merite- rebbe verosimilmente ulteriori sviluppi) la Televisione su grande schermo è già oggi una realtà pratica secondo due pro- cedimenti di caratteristiche opposte, fra i quali la scelta deve essere effettuata dall'esercente. Le considerazioni prece-

denti possono valere soltanto ai fini di un orientamento generico, in quanto la comparazione definitiva dei vantaggi e dei difetti presentati dai due sistemi può essere compiuta soltanto attraverso un lungo periodo di impiego.

Discussione

Al termine della relazione Cambi il dott. SCHROTER fa alcune osservazioni sui dati di rendimento e di luminosità di tubi catodici dati da Cambi.

Interloquisce anche l'ing. MANDEL.

La produzione di film cinematografici con l'ausilio della televisione

Il film elettronico ad alta definizione

N. COLLINS e T. C. MACNAMARA Viene esaminato un sistema di produzione di film cinematografici mediante la registrazione di immagini televisive ottenute da apparati elettronici da presa e da riproduzione. Il film così realizzato, detto film elettronico ad alta definizione, è tecnicamente superiore come grana e tonalità fotografiche al film cinematografico normale.

Inoltre col sistema televisivo elettronico si realizza una notevole economia nel costo complessivo di produzione.

Tale sistema è inoltre l'unica via oggi tecnicamente possibile per produrre dei film speciali a dinamica di contrasti ridotta come è richiesta per le trasmissioni televisive.

Le rapport esamine un procédé de production des films cinématographiques moyennant enregistrements des images de télévision obtenues par des cameras de prise de vue TV. Le film réalisé par cette mèthode possède une graine très fine et une meilleures « dynamique » des contrastes. Le prix de production est moindre que celui d'une film normale. Le système éléctronique est le seul qui peut assurer la production rationnelle des films pour transmissions TV.

This paper reviews a system for the produetion of moving pictures films by means of recording high definition images obtained from an electronic TV camera.

The film produced by this system owns many advantages against the ordinary cinematographic film, as well as finer grain and better photo « dynamic ».

Moreover, the production cost of an electronic film is lower than the in the ordinary film.

Fnally, the electronic system represents the sole suitable and rational way for making films devoted to TV transmissions.

This report reviews the current situat- ion in the Film Industry, and draws at- tention to the unavoidably high costs of production, which in the authors' view derive in large part from the production methods at present employed.

As a result of these costs, the risks of picture-making have become very real, and for every picture which shows a substantial return on capitai invested, many only just break even and many make serious losses.

Attempts have been made to reduce production costs and many expedients have been tried, but without significant success.

The authors seek to suggest that the failure to reduce costs significantly wi- thout spoiling the product is above all due to the limitations imposed by the optical camera, which, despite improve- ment out of all recognition in technical detail, remains essentially the same in- strument as in the days of Lumiere and Friese-Green.

As seen by the authors, the limitations of the optical camera centre on the fact that no-one except the camera operator can have a true picture of what is being shot during a take and the director is therefore compelled to rely on his po- wers of judgement and imagination to visualise the nature of the shots, which he cannot see until rushes are projected- probably the next day.

In consequence, he must at the expen- se of a great deal of footage safeguard himself by a repetition of takes to the point where he can be sure that he is hound not only to have at least one en- tirely satisfactory shot but that he has assembled sufficient material to cut into a finished sequence.

The employment of more than one orthodox camera in a continuity se- quence is considered by the authors to be entirely impracticable — a view in which most film-workers concur — not least because of the artistic hazards that are involved, and because the lighting

148

ATTI E RASSEGNA TECNICA DELLA SOCIETÀ DEGLI INGEGNERI E DEGLI ARCHITETTI IN TORINO - NUOVA SERIE - ANNO 7 - N. 5 - MAGGIO 1953

149

ATTI E RASSEGNA TECNICA DELLA SOCIETÀ DEGLI INGEGNERI E DEGLI ARCHITETTI IN TORINO - NUOVA SERIE - ANNO 7 - N. 5 - MAGGIO 1953

(2)

that some part of the exposed film de- picts the action as he wishes it.

It is sometimes argued that the una- voidable period of waiting before being able to study the projected film is not injurious to the end-product but is, in fact, positively beneficial. The view has been expressed that the technical per- fection of the finished film can be obtai- ned only by these two distinct proces- ses the totally undistracted shooting of individual and unrelated scenes in the studio, followed by the far more leisu- rely assessment of the rushes when they are projected upon the screen in the viewing theatre.

Such a view may well rest upon a con- fusion of cause and effect, and may indeed conceal a misconception of pro- per artistic method, for it can be argued that with the facilities offered by the present type of camera, no other proce- dure could possibly be employed.

It now becomes profitable to consider the relationship of the individual shots to each other. It will be accepted by most film-makers that a great—possibly the greater part of the artistic merit of the finished film, i.e. its effect upon the audience, will ultimately depend as much upon the juxtaposition of sequen- ces as upon the merits of the individual shots themselves.

In film-making under present condi- tions, however, the director is denied the possibility of any prior judgment on this point. He is compelled to rely upon “assembly” or “rough-cut” of the rushes before he can begin to eva- luate these juxtapositions properly. By then it is frequently too late, except at considerable expense, to add what is discovered to be missing or to put right what is found to be wrong; furthermore, it is not until this stage that it can be realized that certain shots which are sati- sfactory in themselves are nevertheless redundant. .

Nor is it surprising that this state of affairs should be so; because of the na- ture of the medium in which he is wor- king the director is in the position of an artist denied the facility of sketching- in the general outline of his picture and therefore forced to bring the various details to perfection as he proceeds. It should be recognized that the only ou- tline to which the director can refer is his shooting script. This can, however, prove a false and misleading guide, ina- smuch as the whole art of film-making consists of the translation of a literary form into a visual one, and it is only visually that the finished result can be judged.

THE TECHNIQUE OF THE ELECTRO- NIC CAMERA.

The use of the electronic camera—or rather a unit of three or four such ca- meras-will obviate many if not all of the difficulties which confront the fiim director who is employing single optical equipment. It is of the essence of the electronic method employing more than one camera that, during both rehearsal and shooting, the director can view upon his monitor screen not merely isolated

shots but complete sequences (i.e. the blended output of his several cameras) of whatever length he may desire. The director can thus study the “architec- ture” of the film whilst the construction of the whole is still being composed, and the element of artistic hazard in- trinsic in multiple-camera working with purely optical cameras is entirely avoi- ded.

The film industry has already shown its awareness of the contribution which the electronic camera can make to smoothrunning studio production by the introduction of an electronic aid in the form of a view-finder used in conjunction with multiple optical cameras. The ad- vantages possessed by the combination of optical camera and electronic view- finder may be roughly summarized as follows. First, the element of operatio- nal blindness is removed; the director can study a cameraview of the shot dur- ing both rehearsal and the actual shoot- ing. He can satisfy himself that the découpage, i.e. the breakdown into shots and angles, is as effective visually as it appears to be on paper. He can, whilst there is still time to alter or modify his own intentions, watch continuous se- quences, and he is no longer compelled to work in a series of discontinuous glimpses. Finally, the electronic image can be multiplied and distributed, so that other key workers—the producer, the lighting engineer, the make-up su- pervisor, etc., can exercise their own separate supervisions.

Because of these advantages the addit- ion of the electronic view-finder to an orthodox camera is regarded as a pro- gressive step; nevertheless, it is essen- tially a traditionalist solution to a pro- blem which is amenable to more sati- sfactory solution by newer methods. If the electronic image produced by the view-finder on the camera (or rather the master image produced by the several view-finders on the various cameras in the unit) already exists in convenient form, the most rewarding course would be to improve the quality of that image until it attains technical parity with nor- mal film, and then to photograph the master image itself rather than turn back to the individual cameras for the actual process of recording.

The advantages inherent in this me- thod will already he apparent to any director who is familiar with modern television-studio technique. Once the electronic camera has been substituted for the optical camera within the studio the electronic image on the director’s master-screen becomes not merely an accurate and helpful camera-eye view of the scene, but an identical reproduction, faithful in all respects with regard to lighting, focus, tonal gradation, bril- liance, etc., of the picture which is to be, or is being, recorded. Moreover, the photography has taken place at the point where the contribution of the elec- tronic unit and of the director’s super- vising intelligence are at their optimum Not only can the “cuts,” “fades,” and

“wipes” be recorded precisely as the director wishes, but this facility extends automatically also to mixes and superim-

positions. Thus, at the end of shooting it is a portion of the fully finished film, rather than a collection of shots needing processing and editing, which the direc- tor of an electronic camera-unit has in his possession.

It is not the purpose of the paper to consider the advantages, in terms both of financial economy and of improve- ment in acting standards, which sequence shooting provides in comparison with the separate-shot method. The main issue is the question of the technical quality of recordings made from an elec- tronic image. It remains, therefore, to show the reasoning which leads to the belief that recordings made by this me- thod can produce film of fully accepta- ble technical quality.

OVERALL TECHNICAL CONSIDERA- TIONS.

It is clear that, to be acceptable, mot- ion pictures made by the process de- scribeb in the paper must to all practical intents and purposes be indistinguishable from those made by ordinary optical methods. This being so, an assessment of the average technical quality of pic- tures intended for theatrical release must be made, in order to determine the stan- dard of technical performance which has to be achieved to attain the requisite effect. This is a difficult process, com- plicated by the profound influence of the artistic and entertainment value of the product, but swhilst recognizing the overwhelming importance of these qua- lities in their proper sphere, the engineer must endeavour to disregard them and evaluate such purely technical quantities as he can. Even when he can assign objective values to the more measurable qualities, his task is still formidable, because the final result will be judged subjectively and no two people will agree what constitutes the most accep- table product when it comes to the por- trayal of some particular scene. The most important qualities which must be assessed are, in order of relative impor- tance, tonal range and fidelity of tonal reproduction, and picture definition.

Contrast Range.

Dealing first with tonal fidelity and excluding specialized shots where unu- sually small or distorted contrast ranges are used for special effects, it is gene- rally conceded that the average motion- picture-film print has a useful detail- bearing contrast range of 0 ·2-l· 5, ex- pressed in terms of density = log 1/x, where x is the transmission coefficient.

Extreme highlights, such as reflections from chromium-plated parts of motor cars, musical instruments, sequins and to a lesser extent glints in eyes, shine on hair, etc., are permitted to extend to a value of about 0·1, which is the density of the celluloid base and con- stitutes a burnt-out highlight which con- tains no detail, but the presence of which is essential to give sparkle to the picture. At the other end of the scale, there is usually no great advantage in reproducing dark areas of density grea- ter than 1:5 with any detail, because

152

the ambient light falling on the screen is sufficient to flatten them out, owing to requirements of safety lighting in theatres. Nevertheless, it is customary to permit extremely dark areas to reach a density substantially below 1:5 wi- thout, however, containing much detail.

It may thus be said that the detail- bearing contrast range in an average motion-picture film, expressed in linear terms, is antilog ( 1:5-0:2) = 20:l. Allo- wing for extension to burnt-out high- lights at one end of the scale (density

= 0·l) and extreme blacks at the other (density = l·7), the total contrast range is probably some 40:1 in the print itself.

It does not follow that this range of contrast will always be realized on the screen when the film is projected, be- cause the actual limits of reproduction will vary enormously with many factors.

The quality of the illuminant and optical system of the projector, the amount of ambient light reflected on to the screen by different decorative schemes in the auditorium and many other things all contribute to reduce the effective con- trast of the picture.

These considerations aside, however, it seems clear that, to be comparable with normal motion-picture film, the release prints of motion pictures made by the proposed electronic process must have a total maximum contrast-range of some 40 or 50:1.

For the contrast characteristic requi- red, normal practice in motion pictures is to work to an overall gamma of about 1:3. which correspond to a mean gamma of about unity. It is clearly desirable that films made by the electronic method should conform to this convention and there is no difficulty in achieving this result. In fact, the electronic process offers the possibility of improvement, because the extreme flexibility of the electronic chain through which the si- gnals corresponding to picture are passed allows almost any shape of transfer cha- racteristic to be contrived, within broad limits determined by the signal/noise ratio.

This is very significant, because it me- ans that inherent defects in photographs, which are cumulative throughout the printing and processing and which re- sult in a far from ideal characteristic in the final product, can be corrected by electronic compensation when the elec- tronic camera is used, whereas they have to be tolerated when only the ordinary optical camera is available. As a result, the film produced by electronic means should ultimately be superior in tonal quality to that made by normal optical methods.

Definition.

The study of definition in a photo- graphic image is a difficult subject, and too much adherence to conventional ap- proaches con lead to erroneous conclu- sion. A somewhat novel approach to the problem has therefore been evolved, in the hope that methods of measurement may emerge which are capable of yiel- ding more realistic results than some of the methods used in the past.

For example, the resolving power of a lens or a film stock, or a combination of the two, is usually defined as a limit- ing resolution of so many lines per mil- limetre. This means that an image com- posed of a pattern of that line density is just discernible, i.e. it is an extinct- ion value. Any detail finer than this is lost, falling within the circle of confu- sion of the lens or the film grain size, or some combination of the two.

This definition by itself is misleading in assessing the effective sharpness of the resultant picture. The limiting re- solution figure is analogous to the ulti- mate cut-off frequency of a low-pass filter, or, with certain minor reservations, of any piece of television equipment, such as a video-frequency amplifier or television broadcast transmitter. It gives no indication of the performance of the equipment at frequencies in the pass region below cut-off.

Obviously, many factors, such as lens aberrations, flare, internal reflections and diffusion of light and grain structure in the photographic emulsion, etc., must contribute to this fall-off in response as the detail fineness approaches the li- miting resolution or extinction value, but a mere statement of the resolving power does not disclose the rate at which the fall-off takes place.

In an attempt to reconcile the televi- sion and optical points of view, the authors propose to use a term which has come to be used, namely “detail fre- quency,” which is the product of the number of lines per millimetre into which the object is dissected and the scanning speed. Detail frequency in television is thus the electrical counter- part of detail fineness in photography and its use permits comparisons to be made. It must be recalled, however, that 1 line/mm in photographic practice conventionally represents one white and one black line, whereas in television the black and white lines are counted sepa- rately, i.e. one photographic line equals two television lines. It must be added, moreover, that the detail frequency is to be regarded as the fundamental fre- quency generated by scanning a repeti- tive pattern. No account is taken of harmonic development at this stage.

Fig. 1 shows an arbitrary comparison between the detail-frequency response of a television system and the detail re- sponse of a lens and photographic emul- sion in comparable terms. To illustrate the point, the lens and film combination have been shown as having something approaching a normal aperture/distortion curve, whereas the television-system re- sponse has been maintained at 100%

almost up to a sharp cut-off. The li- miting resolution is the same in both cases.

It is believed that of the two repro- ducing systems, television will present a picture giving a greater subjective im- pression of sharpness and boldness of detail than the other, even though the detail cut-off frequencies are the same in both cases. The theory is advanced that subjective impression of definition can in some way be related to the ratio of the respective areas below the curves.

The determination of this effect is com- plicated—like all comparisons of defi- nition between television and photo- graphy—by the fact that television pic- tures are discontinuous in the vertical plane, whereas photographs are conti- nuos in both planes. However, this does not necessarily invalidate the truth of the conception.

Another way of considering the same effect is to study the rate of change from black to white (and vice versa) at- tainable in photography. It is known that the transition from black to white in a photographic image is not infinitely rapid. In other words, the density change at the edge of an exposed area is gradual and not abrupt. Discounting contributions due to lack of sharpness in the lens, the main cause of the effect is hallation or dispersion in the grain of the emulsion. To demonstrate this effect, an image of alternate black and white bars of progressively smaller dimensions is explored by means of a microdensito- meter, which is capable of measuring the density of areas small by comparison with the width of the narrowest bar.

The results of such an exploration are shown (greatly exaggerated) in Fig. 2.

The full curve illustrates the ideal re- sponse, and the dotted curve the general shape of results attained in practice. It becomes apparent that the effect is pre- cisely analogous with the distortion of a square wave which has been passed through an amplifier with an insufficien- tly short rise-time.

Investigation shows that the “rise- time” of different photographic emul- sions varies greatly, for example, with grain size, etc., and it is not necessarily those emulsions that are capable of the greatest absolute resolution that posses the shortest rise-time for a black-and- white pattern of given fineness. It is believed that the picture which gives the best subjective impression of sharpness is the one that possesses maximum depth of modulation at higher frequencies and most rapid rise time, and that a figure of merit of apparent sharpness can be extracted, based on a mathematical com- bination of these two values. It will therefore be seen that to evaluate the quality of average motion-picture defi- nition and to translate the result into terms of equal television definition is not a simple process. In consequence, it has been necessary to base the calcu- lations on a simple conversion using such values as are generally accepted.

Before proceeding to numerical values it seems desirable to recognize that mot- ion-picture technicians have, over a long period, arrived empirically at an order of definition which is adequate to satisfy the most discerning member of the pu- blic, even when sometimes projected through rather mediocre equipment.

There is little doubt that twice or even four times the definition could be rea- lized, but it would be quite unnecessary and uneconomic to do so. The generally accepted standard seems to comprise a lens and negative-stock combination ha- ving a limiting resolution under best conditions of about 40 lines/mm on the axis, and some 30 lines/mm over the

ATTI E RASSEGNA TECNICA DELLA SOCIETÀ DEGLI INGEGNERI E DEGLI ARCHITETTI IN TORINO - NUOVA SERIE - ANNO 7 - N. 5 - MAGGIO 1953

ATTI E RASSEGNA TECNICA DELLA SOCIETÀ DEGLI INGEGNERI E DEGLI ARCHITETT1 IN TORINO - NUOVA SERIE - ANNO 7 - N. 5 - MAGGIO 1953

153

(3)

whole field of a frame (22:55 mm x xl6:03 mm.)

After processing, the release print has a limiting resolution of about 25-30 lines/

mm on the axis. This is not a very high standard of definition, and a sin- gle-35 mm frame projected statically to normal screen dimensions generally ap- pears fairly soft. Under running con- ditions, however, “dynamic resolution”

makes its effect apparent and helps to produce an impression of adequate sharpness.

The mechanism of the dynamic-reso- lution effect lies in the fact that surface noise is random and adds from frame to frame in quadrature. The image, on the other hand, is repetitive and there- fore tends to add arithmetically over a number of frames; moreover, the sharp- ness of edges is improved because a random succession of film grains, as it were, scan them and sharply delineate them.

For the choice of standards of electro- nic-image definition to give results com- parable with motion-picture film produ- ced by normal methods, it is necessary to consider the order of resolution re- quired and that realizable in the present state of electronics. So far as image dissection is concerned, the only varia- ble quantity is the number of lines, since the picture repetition frequency is fixed by motion-picture standards at 24 frames/

sec. The decision regarding the num- ber of lines controls many factors, of which the bandwidth of the system, the signal/noise ratio and the size of the scanning spot at both camera and repro- ducing tube are of cardinal importance.

It is well known that, for a given num- ber of lines, there is a calculable band- width which must be used in order to produce definition which is equal in both vertical and horizontal directions.

It is worth remembering that the use of many more lines than the available band- width justifies can result only in pro- gressive deterioration of the picture de- tail, since the detail frequency increases as the square of the number of lines.

The effect of increasing the number of lines, however, has a meretricious appeal, because of the finer resultant structure of the picture, but, whilst easier on the eye, it has no advantage for photography, where the linear struc- ture is going to be eliminated in any case by one of the known expedients and out-and-out detail resolution is all that counts.

Considering, in the absence of anyth- ing better, a direct translation from op- tically produced film-definition standard to television, the following assembly of facts is arrived at:

The resolution of a normal motion- picture negative has been assessed, at best, to be about 40 lines/mm, which re- presents 80 television-picture points per millimetre.

Since the frame is 22·05 mm wide, the definition along the line is equiva- lent to a total of 80x22·05 = 1 764 picture points.

This, however, is based on photo- graphic limiting-resolution values, so

that it seems possible, in the light of the foregoing arguments, that apprecia- bly less television picture points would suffice to produce a picture of acceptable sharpness. In this connection, Kemp (1) has suggested that it would be permissi- ble to introduce a factor C, of which he considers the value to be about 0·75, to compensate for the more rapid decay of response of the photographic system with increasing fineness of detail, as opposed to the maintenance of a high level of television modulation up to the frequen- cy of cut-off. Application of this factor gives the definition along the lines as the equivalent of 1764x0·75 = 1323 picture points. Direct translation of this value into the number of lines from top to bottom of the picture gives 1323x0·75 = 992 lines. The bandwidth required to transmit this detail, given ' by the familiar L2RP/2 formula, is the- refore (9922x4x24)/(3x2) = 15·75 Mc/s.

It will be argued that it would not give a balanced picture, i.e. one in which vertical and horizontal definitions are equal, because of the line scanning fac- tor, K. Various values have been assi- gned to K, but taking it at 0·75, the number of lines is increased to 992/0·75

= 1 320.

To sum up, therefore, a definition along the line corresponding to one- hundredth of the picture height, but to take account of diversity in the disconti- nuous vertical direction, the number of scanning lines may have to be increased to 1 300 with a 25 % increase in band- width to cater for the increased scann- ing speed.

However, because of the probably greater incidence of vertical than ho- rizontal lines in a natural scene, it may not prove necessary to go much above 1 000 lines, and, since there is a tre- mendous advantage in keeping the writ- ing speed as low as possible, this figure has been taken as a basis for first expe- riments.

It must be emphasized that the whole of the foregoing is advanced with extre- me reserve and is, moreover, the subject of experiments currently being made, as much of it is based on pure supposition and on theories which have always been the subject of fierce controversy. Doubt- less, calculations on other bases would yeld widely divergent results, but the authors feel that it is essential to make some attempt to determine numerical values, as a starting point for practical investigation.

Quite apart from the foregoing, there remain the possibility of introducing novel means of picture dissection—which may prove more adaptable than scann- ing of the orthodox variety—to the pro- duction of motion-picture film by tele- vision methods. It is too early, however, to make more than a passing reference to such possibilities, and for the purpose of the paper the authors have confined their consideration to scanning of the conventional type.

INTERLACED AND SEQUENTIAL SCANNING

(1) W. D. KEMP, Television Recording, Television Convention, 1952, Session 3, Paper No. 1351.

154

flicker being effected at the film pro- jector, where the light is obdurated twice, or preferably three times, during the projection of each picture frame.

Freedom to use sequential scanning leads to a consideration of its advantages, which may be stated as follows:

(a) It is appreciably easier to obtain accurate registration of the lines in a sequential than in an interlaced raster.

(b) Movement blur, due to the for- mation of double images, and line crawl are eliminated.

(c) The obligation to produce an exact number of lines per frame no longer exists, which opens up possibili- ties of the introduction of advantageous effects analogous to the dynamic-defini- tion effect.

(d) The number of frame-suppres- sion periods per picture is reduced from two to one, thus materially increasing the

“time efficiency” of the system.

It is thus suggested that sequential scanning presents so many advantages that its use is to be preferred. The only serious disadvantage lies in the fact that the pictures viewed by eye, during pro- duction, suffer from the severe disad- vantage of 24-c/s flicker. There seems some hope, however, that the effect of flicker may be to a large extent reduced by the use of reproducing cathode-ray- tube screens having long decay times.

THE ELECTRONIC CAMERA Brief Description of System To summarize the foregoing, it would appear that the use of a 1 000- to 1 300- line sequentially-scanned electronic ima- ge with a bandwidth of 15 to 20 Mc/s will suffice to give adequate definition for the production of acceptable motion- picture film, provided that the whole system is sufficiently free from loss and distortion. The contention is advanced that definition of this order is within range of modern electronic equipment and that within a short time, equipment which has been developed in the labora- tory will be available in a form which will be suitable for use on the studio floor.

Optical Performance

No limitation in definition is imposed on the system by the taking lens of the electronic camera, since good-quality 35-mm lenses of to-day are capable at full aperture of resolving from 8 to 10 times the fineness of detail normally re- quired for making a film optically.

The use of a standard range of 35-mm lenses also ensures that depth of focus, taking angles and so on, are exactly similar to those to which film techni- cians are accustomed.

Handling Characteristics

Electronic cameras can be made in conventional shape, but much smaller and lighter than their optical counter- parts. No form of “blimp” is necessary, because the electronic camera is comple- tely silent. No necessity for reloading

exists, and the cameras will operate for long periods without attention.

Apart from this, the camera handles in exactly the same way as any film camera, and the camera operator, if he so wishes, may adopt entirely conven- tional methods of view-finding, focus- pulling, etc. On the other hand, he has open to him entirely new features, such as cathode-ray view-finder, remote turret and iris operation, as well as facilities for remote or even automatic focusing, including splitting focus.

Only time can show how he will choose to employ these facilities, but it seems very probable that a technique can be built up using some or all of them with a material increase in efficiency of working.

Technical Performance Requirements The electronic camera must be capable of resolving some 1 000-1 300 lines and generating a substantial amplitude of signal up to the highest detail frequency.

The photometric response must be such that a substantially linear characte- ristic can be obtained, with correction, if necessary, for a 50:1 range of light intensity.

The signal/noise ratio of the whole system must be not worse than —30 db on peak white.

The camera must be free from shading and vignetting effects and spurious signals generally, and it must maintain constant illumination over the field and a constant black level under the exacting conditions of practice.

The sensivity of the whole system must be at least equal to or greater than that of a normal film camera used with fast negative stock, and the scanning geo- metry must be of a very high order of accuracy, say within 1% in terms of velocity.

The associated equipment must have sufficient gain for the purpose in hand and a handling capacity large enough to allow for pre-emphasis at the higher frequencies, if necessary. It must be free from phase distortion or overshoot gene- rally.

Facilities must be provided for gain adjustment, shaping of amplytude cha- racteristic and the introduction of pre- emphasis.

Finally, means must be provided for cutting, fading, mixing or superimposing the pictures from a number of cameras and introducing electronic wipes, over- lays, matte and other process shots, as well as programme material derived by telecine scanning of film taken elsewhere of exteriors, etc.

As in the camera, the scanning geo- metry of the recording unit must be of unimpeachable accuracy and the spot size sufficiently small to resolve the re- quisite definition without appreciable loss.

The tonal response must be either linear or capable of being shaped to compensate for the film-gradation cha- racteristics. The maximum available

peak brightness must be sufficient to re- produce the highest burnt-out highlight without “white flattening” or defo- cussing.

Steps must be taken to reduce disper- sions or reflections of light so as to pre- serve the maximum contrast range, and the recording tube must be set up vis-à- vis the motion-picture recording camera in such a way as to minimize the effects of vibration.

The Mechanism of Photographic Re- cording

The choice of a means of photogra- phing the image on film in the form of a motion picture poses a number of serious questions. Numerous methods have been proposed to bring about the desired result, but, broadly speaking, practicable methods tend to fall into one of two main categories, namely inter- mittent of continuous motion. The rela- tive merits of the two systems, in their various applications to television record- ing are discussed by Kemp (loc. cit.), and there is therefore no need to en- large upon them here.

It must be noted, however, that Kemp's approach to the problem is conditioned by the fact that his treatment concerns the problems of recording broadcast television, where the worker is presented with a composite signal in- tended for reception on a normal tele- vision receiver. The form of this signal is fixed and he cannot in any way vary it.

The authors, on the other hand, are at liberty to make any changes in signal waveform that they see fit and conse- quently their conclusions are influenced by the greater degree or freedom open to them, as well as by the fact that they are working to much higher standards of definition, which in turn bring special problems.

Whilst there can be no doubt that con- tinuous motion is exceedingly attractive from many points of view and may prove to be the ultimate solution, the accuracy of registration which can be realized in the present state of development is in- sufficient for recording pictures of the order of definition required. In conse- quence, attention has been directed to the intermittent system, which has been proved by many years’ use in the mo- tion-picture industry to give a very high degree of accuracy of registration.

The application of the intermittent movement to the problem or recording high-definition electronic images has, of course, been greatly eased by the free- dom to adapt the signal waveform to suit the operating conditions of the pho- tographic camera.

To illustrate the degree of this ease- ment, consider the case of recording broadcast television with an intermit- tent camera. If the maximum picture in- formation is to be recorded, the film shift must take place completely within every other frame-suppression interval.

This means that the film must be acce- lerated, decelerated, brought to rest and registered in a period of 14 television lines, which represents a time interval of about 1:4 millisec, or 12° rotation of the film-camera mechanism.

ATTI E RASSEGNA TECNICA DELLA SOCIETÀ DEGLI INGEGNERI E DEGLI ARCHITETTI IN TORINO - NUOVA SERIE - ANNO 7 - N. 5 - MAGGIO 1953 ATTI E RASSEGNA TECNICA DELLA SOCIETÀ DEGLI INGEGNERI E DEGLI ARCHITETTI IN TORINO - NUOVA SERIE - ANNO 7 - N. 5 - MAGGIO 1953

155

RECORDING CATHODE-RAY-TUBE UNIT

For the purpose in hand the choice between interlaced and sequential scann- ing involves several important conside- rations. Interlaced scanning is univer- sally used for broadcast television and, in this connection, is an extremely useful expedient. By interlacing, the apparent flicker frequency of the reproduced pic- ture is doubled, without, however, any increase in the bandwidth required to transmit it. The principle of interlacing therefore possesses outstanding advan- tages for broadcasting in that its use transforms a television picture of com- paratively low repetition frequency, which would exhibit considerable flicker if sequentially scanned, into one which within acceptable limits of brightness is effectively flicker-free.

On the other hand, the introduction of interlacing is generally held to reduce the apparent definition of the picture as viewed by the eye. A number of effects are involved, of which three may be cited. First, slight inaccuracies of re- gistration of the interlace raster result in " pairing " of the scanning lines, or, in extreme cases, superimposition of the lace and interlace lines. This is bound to reduce the definition progressively as the pairing effect becomes worse, until complete superimposition occurs, when the definition is theoretically halved. It is only fair to record that advances in design of scanning circuits have greatly reduced this defect in the last year or so.

Secondly, the movement of the view- er's eye when following vertically-mov- ing objects strobes the line structure and momentarily breaks the picture as seen into half the number of lines, giving the impression of a coarse line-structure.

A similar effect occurs in the television camera, where strobing can take place between the line scanning and objects moving up or down the vertical axis of the picture. Tilting of the camera can produce the same effect. It must be noted that in the recording of a televi- sion picture strobing effects are confined to the electronic pick-up camera and do not occur at the photographing point, because the photographic camera has a fixed viewpoint. Nevertheless, even in its reduced form, the result of " line crawl " introduced by the camera can be quite serious.

Thirdly, the use of interlacing gives rise to a particularly objectionable form of movement blur, because two discrete and separate images of a fast-moving

: object appear on the screen, displaced

1 from one another by the distance through which the object has moved in the 1/48 - sec interval between the writing of the two superimposed rasters. This is a form of movement blur which finds no counterpart in the natural response of the eye or in normal cinematography.

On the question of recording television images on film, however, it will be im- mediately apparent that the need for interlacing fundamentally does not exist, because the standard picture repetition rate is 24 frames/sec, elimination of

(4)

Exposure Time and Movement Blur Some consideration must be given to exposure time in an electronic, as op- nosed to a photographic, camera. In normal motion-picture work, the maxi- mum available exposure is usually 180 and although practice varies, the usual run of pictures is shot a full exposure.

Shorter exposures, obtained by reducing the shutter opening angle, are generally used only for scientific investigations.

The effect of using a comparatively

moving objects and when the camera is panned.

A compromise is therefore necessary, and motion-picture experience indicates that a storage memory of 0·25-0·5 frame in lenght is likely to be satisfactory. It is not thought that the effect is parti- cularly critical, and most television ca- meras in use to-day do not show any unpleasant effects in this connection under any reasonable conditions of working.

CHOICE OF FILM STOCK

A considerable degree of latitude exists in the choice of film stock for the re- cording camera, by virtue of the fact that the amount of light emitted by the recording cathode-ray tube is indepen- dent of studio illumination and may be kept constant under all conditions. Pro- cessing to constant gamma as opposed to constant density is facilitated by this.

Moreover, much more light is availa- ble at the film than when it is exposed in an optical camera, not only because the intensity of lights emitted by the cathode-ray tube may be made several times that of the light reflected from a studio scene, but also because the op- tical system used with the photographic recording camera can be made more ef- ficient than that which it is possible to use on a studio floor. Magnification is constant and negligible depth of focus

is required, because the cathode-ray screen is a flat field.

In consequence, comparatively slow film stocks can be used, with advantage in terms of resolution, rise time, absence of granularity and linearity of tonal cha- racteristic. Moreover, images on fine- grain negative are known to suffer pro- portionately less in processing and print- ing than those on more sensitive and coarser-grained emulsions.

CONCLUSION

Whilst encouraged by the results of laboratory and studio tests to date, the authors are conscious that the paper is necessarily tentative in its conclusions and is in many respects lacking in pre- cise data. However, in view of the ra- pidly developing interest in electronic film-making, they felt that an interim paper of this nature would nevertheless be of interest.

ACKNOWLEDGEMENTS

The authors are indebted to: Pye, Ltd.; the J. Arthur Rank Organization;

London Film Productions, Ltd.; Eastman Kodak, Ltd.; E. F. Moy, Ltd.; and W.

Vinten, Ltd., for information and as- sistance.

The authors also wish to express their thanks to Mr. W. D. Kemp and Mr. B.

R. Greenhead for their help in the pre- paration of the paper.

Televisione inglese 1952

C. EGIDI

Sulla base delle notizie apprese in occasione del recente Convegno I.E.E. di Londra (primavera del 1952) e di alcune visite alle principali industrie britanniche di televisione, viene delineato un panorama aggiornato sugli aspetti fondamentali di questa tecnica.

Dopo avere rilevato le caratteristiche generiche della televisione inglese e la loro importanza nei riguardi dell'ltalia, vengono brevemente analizzati gli argomenti spe- cifici, ossia la costruzione dei tubi catodici, dei tubi da presa e delle valvole rice- venti, la radiodiffusione televisiva (produzione dei programmi, stazioni trasmittenti, propagazione delle onde, collegamenti fissi e mobili), i ricevitori, la televisione pro- fessionale e industriale.

Si conclude affermando l'estrema utilità, per i tecnici italiani di televisione, di scambi d'informazioni e notizie con i tecnici inglesi.

Sur la base des nouvelles et des informations données au cours du Congrès An- glais de Television du dernier mois de Mai, l'Auteur donne un panorama du deve- loppment actuel de la télévision en Angleterre.

Le rapport touche touts les principaux arguments techniques du secteur.

On the basis of news and informations collected through the British Television Convention of May last, the paper gives a general view of the present development of the television in England.

The main technical subjects of the TV sector are examined through the report.

volta ai tecnici italiani. II testo inte- grale di essa comparira entro poche set- timane sulla stampa tecnica (1).

Tra la fine di aprile e i primi di mag- gio ebbe luogo a Londra, come tutti ricordano, una IEE Convention dedicata a « The British Contribution to Tele- vision »; avendo avuto il piacere di se- Premessa.

Scopo della presente nota e di riassu- mere in forma sintetica i principali aspetti tecnici della televisione inglese odierna e di metterne in luce qualche particolare di speciale interesse.

Essa è quindi principalmente diretta a completare le informazioni gia posse- dute sull'argomento dai tecnici dei Paesi che si accingono ad iniziare l'esercizio televisivo e quindi, in particolare, è ri-

(1) Atti e rassegna tecnica della Societa de- gli Ingegneri e degli Architetti in Torino, ago- sto-settembre 1952.

156

guire i lavori e di partecipare ad alcune visite assai interessanti a Società e fab- briche, è stato possibile a chi scrive for- marsi un’idea assai precisa di quanto in Inghilterra e stato fatto finora e si sta ora facendo su questa tecnica delicata e complessa.

N. 83 memorie furono presentate alla Convention, di cui N. 10 di carattere monografico e improduttivo (survey pa- pers) e N. 73 di carattere specifico (sup- porting papers): i testi completi furono distribuiti in forma di bozze all’inizio dei lavori, mentre la pubblicazione de- finitiva completa delle discussioni è stata appena ora iniziata in una speciale parte III-A dei Proceedings IEE, dal ti- tolo « Convention on the British contri- bution to Television » aprile-maggio 1952.

Caratteristiche peculiari della televisione inglese.

Una interessante caratteristica è data dalla utilizzazione razionale ed econo- mica delle forze nazionali, che si traduce nell’efficace coordinamento del lavoro e nell’accurata divisione di compiti fra gli Enti di Stato (quali il Post Office e il N.P.L.), la Societa di diffusione B.B.C.

e le industrie specializzate nella costru- zione di apparati trasmittenti e riceventi.

Dal punto di vista tecnico molto cam- mino è stato percorso con ricerche ori- ginali inglesi e anche quando la tecnica americana ha superato dapprima ampia- mente quella inglese (come nel campo dei tubi da presa), la ripresa è stata in ogni caso efficace: nella costruzione di taluno di detti tubi, come l'orthicon, i risultati conseguiti sono forse migliori dei modelli.

In sintesi si puo dire che sono soprat- tutto degne di nota l'accurata riprodu- zione delle forme geometriche, il mas- simo sfruttamento della definizione con- sentita dal sistema, la corretta ripresa delle scene, ad evitare stanchezza o fa- stidio negli spettatori, il tradizionale rispetto delle esigenze del pubblico, tradotto nella massima estensione pos- sibile data al servizio in tutto il terri- torio metropolitno (fra breve sarà ser- vito l'85% della popolazione britannica) ed infine, ultima soltanto nell'ordine, 1’estrema economicità raggiunta nella costruzione e nella vendita dei ricevitori televisivi.

Aspetti della televisione inglese.

Ecco i vari aspetti che conviene con- siderare:

A) La costruzione dei tubi catodici, dei tubi da presa e delle valvole rice- venti.

B) La radiodiffusione televisiva.

B-l) Produzione dei programmi sotto l'aspetto tecnico.

B-2) Stazioni trasmittenti.

B-3) Propagazione delle onde inte- ressanti la televisione.

B-4) Collegamenti fissi fra le sta- zioni trasmittenti e collegamenti mobili od occasionali per le riprese televisive fuori degli studi.

B-5) Ricevitori.

C) La televisione professionale e in- dustriale.

Fig. 1. - Allocazione delle frequenze utilizzate nel servizio inglese di televisione.

A) La costruzione dei tubi catodici, dei tubi da presa e delle valvole rice- venti.

I tubi catodici sono per la massima parte di tipo circolare, con il cono per lo più completamente di vetro (rara- mente metallico). La focalizzazione è di tipo magnetico.

L'alluminiatura degli schermi è gene- ralmente usata, per ridurre ulteriormente la bruciatura ionica, aumentare la bril- lanza e migliorare il contrasto. La strut- tura triodica e quella tetrodica sono en- trambe usate e non è stato ancora deciso quale delle due sia preferibile.

Fra i miglioramenti si nota la possi- bilita di far lavorare in serie il tubo catodico con gli scaldatori dimensionati per 300 mA e per potenze inferiori a 2 W, con un elevato isolamento fra scal- datore e catodo.

I due tipi di tubo meno usati, cioè quello a cono metallico e quello tutto in vetro, che presentano rispettivamente il vantaggio di un minor peso e di un ingombro ridotto rispetto a quello cir- colare tutto in vetro, sono per ora limi- tati ai laboratori. Sia la produzione di bulbi in vetro tenero sia di quelli in vetro duro appare oggi soddisfacente.

Diametri molto usati sono i seguenti:

10, 12 e 15 pollici (ossia 25, 30 e 37 cm).

Particolarmente curata è la lavatura degl'involucri prima del trattamento; il processo a secco tende oggi ad essere abbandonato a favore di quello a umido, in cui la dosatura si puo meglio con- trollare. Dopo avere deposti i « fosfori » ed avere eliminato il liquido mediante decantazione lenta, con una speciale pi- petta a comando automatico si applica una pellicola di nitrocellulosa (spessore circa 0,5 μ) e successivamente si fa eva- porare l'alluminio (spessore da 0,05 a 0,1 μ). Interessante la tecnica usata per applicare l'elettrodo di alta tensione.

Molto interessante è la costruzione dei tubi da presa e, in particolare, dell'image orthicon, costruito su licenza della RCA ed attuato dopo circa 3 anni di prove, con eccellenti risultati. La costruzione della sottilissima griglia e la prepara- zione del vetrino (spessore circa 5 μ), in ambiente praticamente privo di pol- vere, sono due aspetti fra i piu delicati e interessanti di tutto il complesso. La stagionatura è di circa una settimana.

Una delle maggiori difficoltà incon- trate dai costruttori di valvole è stata

quella di soddisfare alle necessita dei tipi di ricevitore senza trasformatore, a riscaldamento in serie. In essi si ri- chiede: il funzionamento in serie per gli scaldatori delle valvole e del tubo catodico, la produzione delle tensioni anodiche per diretta rettificazione della tensione di rete e la generazione del- l’alta tensione per il tubo mediante ret- tificazione della tensione di ritorno del- l’asse di tempo di linea.

Tolleranze piu severe sono state ne- cessarie per aumentare le prestazioni delle valvole nei riguardi delle correnti di picco; materiali speciali sono stati necessari per evitare l'emissione di gri- glia. Il termistore è generalmente usato per eliminare le sovratensioni iniziali.

L’uso di parecchie valvole in cascata esige una loro verifica nei riguardi della trasconduttanza G e ciò è stato ottenuto con particolari cure nella vuotatura c nell'invecchiamento, oltre che nella ac- curatezza di lavorazione dei compo- Fig. 2. - Aree di servizio dei trasmettitori inglesi di televisione, quando la rete sarà com- pletata (figurano anche i cinque piccoli tra- smettitori nelle zone di: Newcastle, South- ampton, Aberdeen, Belfast, Plymouth). II trat- teggio indica le aree di maggiore densità di

popolazione.

ATTI E RASSEGNA TECNICA DELLA SOCIETÀ DEGLI INGEGNERI E DEGLI ARCHITETTI IN TORINO - NUOVA SERIE - ANNO 7 - N. 5 - MAGGIO 1953

157

Expert opinion indicates that a film shitf of this speed is on the limits of possibility, and that even if improved designed enabled it to be realized, the strain on both film perforations and mechanism would be such as to make frequent jams and stoppages unavoida- ble and to render maintenance extremely difficult and costly. .

No such mandatory condition exists in the requirements of the proposed system of high-definition recording, and it is possible to choose a frame-suppression interval of any length desired. Any in- crease would, of course be made at the expense of the time efficiency of the system i.e. the ratio of the time during which information is passing to the time during which the system is inoperative during suppression. Nevertheless, a use- ful compromise may be struck in which the gains accruing from the use of a longer frame-suppression period out- weigh the loss in terms of time efficiency.

As stated earlier, the use of sequential scanning gives a substantial gain over interlaced scanning, since there is only one frame-suppression period per frame in the former as against two in the latter.

The authours, therefore, advocate an in- termittent camera with an accelerated film-shift operating during the frame- suppression period.

ATTI E RASSEGNA TECNICA DELLA SOCIETÀ DEGLI INGEGNERI E DEGLI ARCHITETTI IN TORINO - NUOVA SERIE - ANNO 7 - N. 5 - MAGGIO 1953

long exposure of, say, 1/48 sec in a pho- tographic motion-picture camera is to produce a measure of movement blur, which is usually regarded as beneficial in smoothing out movement and pre- venting the formation of discrete sepa- rate images of a fast-moving object in successive frames. Picture-goers are used to this effect, and it enhances the impression of movement as portrayed on the screen.

In the high-definition electronic ca- mera the actual time the scanning beam is traversing each picture point is about 1/48 micro-sec, or a million-times shorter exposure, since this would be the effec- tive exposure if the camera had no me- mory effect. Fortunately all electronic cameras have some “memory” , and it is possible to proportion the memory to give an adequate impression of move- ment.

In the early days of television broad- casting some cameras had a very short memory, and a fast-travelling ball for instance, appeared as a line of white dots. An exceptionally long memory, on the other hand, is equally disadvan- tageous, because under these conditions verv serious blurring will occur on

Riferimenti

Documenti correlati

In particular, the first step of the Exohab1 project is presented here, achieved with the testing of a mission simulation performed with the ExoLab module - appositely developed as

In altre parole, la lettera della legge, nonché il favor manifestato dal legislatore «per ogni forma di definizione anticipata del processo»[vi], indurrebbero a pensare che il

The present survey was carried out on a total number of 111 cetaceans, stranded between 1995 and 2005 on the Italian coastline, in order to provide a preliminary assessment of

[r]

The main results of our analysis can be outlined as follows. We identify the conditions ensuring the existence of a unique steady state equilibrium, which is a saddle point.

Alterazione stato mentale VARIABILI INFIAMMATORIE: VARIABILI INFIAMMATORIE: LEUCOCITI > 12.000/µl o < 4.000/µl o >10% forme immature Proteina C-Reattiva > 2

— We discuss properties of large amplitude magnetic field fluctuations during fast Alfv´ eenic solar wind streams, focussing on the statistics of the rotation angle between