A.2 Attenuazione del segale
A.2.3 Attenuazione dovuta a cause strumentali
L’attenuazione dell’ampiezza del segnale EM inviato e ricevuto può essere dovuta anche a cause di natura strumentale come ad esempio lo scarso accoppiamento (coupling effects) tra l’antenna e il terreno.
Da quanto descritto finora si evince la potenza del segnale ricevuto sarà pari ad una porzione infinitesima di quella generata; questo impone l’utilizzo di strumentazioni sofisticate e un’accurata acquisizione in campagna in modo da ridurre quella componente rumorosa che va nascondere l’informazione ricevuta dal segnale stesso.
È possibile raggruppare tutti i possibili fattori di attenuazione di un segnale radar trasmesso nel terreno all’interno di una quantità nota come fattore di performance Q:
Tale fattore indica la misura, espressa di dB, del rapporto tra la potenza del segnale sorgente e quella del segnale ricevuto ed è utilizzato per caratterizzare un sistema radar.
191
Aizebeokhai A.P., Olayinka A.I., Singh V.S., (2010), Application of 2D and 3D geoelectrical
resistivity imaging for engineering site investigation in a crystalline basement terrain, south- western Nigeria. Journ. Environ. Earth Scien., Vol. 61, pp. 1481-1492
Aizebeokhai A.P., (2010), 2D and 3D geoelectrical resistivity imaging: Theory and field de-
sign. Scientific Research and Essays, Vol. 5, No. 23, pp. 3592-3605
Annan A.P., (1993), Practical processing of GPR data. Proceedings of the Second Govern- ment Workshop on Ground-Penetrating Radar, Columbus, Ohio
Annan A.P., (1999), Practical processing of GPR data. In Sensors & Software Inc., Proceed- ing of the second government workshop on ground penetrating radar. Mississauga, Canada Autori vari, (2016), GPR–SLICE© v7.0 – User’s Manual. www.GPR-SURVEY.com
Autori vari, ERTLab 3D electrical resistivity tomography inversion software - User Manual. Geostudi Astier Livorno
Autori vari, ViewLab 3D_User Guide. Geostudi Astier Livorno
Baker P.L., (1991), Response of ground-penetrating radar to bounding surfaces and
lithofacies variations in sand barrier sequences. Exploration Geophysics, Vol. 22, pp. 19–22
Barone P.M., Swanger K.J., Stanley-Price N., Thursfield A., (2016), Finding graves in a cem-
etery: preliminary forensic GPR investigations in the non-Catholic cemetery in Rome (Italy).
Measurement, Vol. 80, pp. 53-57
Bentley L.R., Gharibi M., (2004), Two- and three-dimensional electrical resistivity imaging
at a heterogeneous site. Geophysics, Vol. 69, pp. 674-680.
Bevan B.W., (1991), The search for graves. Geophysics, Vol. 56, No. 9, pp. 1310–1319 Brewster M.L. and Annan A.P. (1994), Ground-penetrating radar monitoring of a controlled
DNAPL release: 200 MHz radar. Geophysics, Vol. 59, No. 8, pp. 1211-1221
Casadio M., Elmi C., (2006), Il manuale del geologo, Pitagora Editrice
Chambers J.E., Ogilvy R.D., Meldrum P.I., Nissen J., (1999), 3D electrical resistivity imaging
of buried oil-tar contaminated waste deposits. Eu. J. Environ. Eng. Geophysics, Vol. 4, pp. 3-
15.
Chambers J.E., Ogilvy R.D., Kuras O., Cripps J.C., Meldrum P.I., (2002), 3D electrical imag-
ing of known targets at a controlled environmental test site. Enviromental Geology, Vol. 41,
pp. 690-704
Chambers J.E., Kuras O., Meldrum P.I., Richard D. Ogilvy R.D. and Hollands J., (2006),
Electrical resistivity tomography applied to geological, hydrogeological and engineering in- vestigations at a former waste disposal site. Geophysics, Vol. 71, B231-B239
Coggon J.H., (197l), Electromagnetic and electrical modeling by the finite element method. Geophysics, Vol. 36, No. 1, pp. 132-155
Constable S.C., Parker R.L. and Constable C.G., (1987), Occam’s inversion: A practical al-
gorithm for generating smooth models from electromagnetic sounding data. Geophysics,
Vol. 52, pp. 289–300
Conyers L.B., (2006), Ground-Penetrating Radar Techniques to Discover and Map Historic Graves. Historical Archaeology, Vol. 40, Issue 3, pp. 64-73
Costantini P., (2012), Geofisica Applicata (slide delle lezioni). Laurea Magistrale in Geofisica di Esplorazione e Applicata, Dipartimento di Scienze della Terra, Università di Pisa
Dahlin T., Bernstone C., (1997), A roll-along technique for 3D resistivity data acquisition
with multi-electrode arrays. Proceedings SAGEEP’97, Reno, Nevada, pp. 927-935
Dahlin T., Loke M.H., (1997), Quasi-3D resistivity imaging-mapping of three-dimensional
structures using two-dimensional DC resistivity techniques. Proceedings of the 3rd Meeting
of the Environ. Eng. Geophy. Soc., pp. 143-146
Dahlin T., (2001), The development of electrical imaging techniques. Computers and Geosci- ences, Vol. 27, No. 9, pp. 1019- 1029
Dahlin T., Bernstone C., and Mong Hong Loke M.H., (2002), A 3-D resistivity investigation
of a contaminated site at Lernacken, Sweden. Geophysics, Vol. 67, No. 6, pp. 1692-1700
Daniels D.J., (1996), Surface-penetrating radar (IEE radar, sonar, navigation and avionics) series 6. The Institute of Electrical Engineers, London.
Daniels D.J., (2004), Ground penetrating radar (IEE radar, sonar, navigation and avionics) series 15. The Institute of Electrical Engineers, London.
Davis, J.L., Annan, A.P., (1989), Ground-penetrating radar for high-resolution mapping of
soil and rock stratigraphy. Geophysical Prospecting, Vol. 37, pp. 531–551
Day-Lewis F.D., Johnson C.D., Singha K., and Lane J.W. Jr., (2008), Best practices in elec-
trical resistivity imaging: data collection and processing, and application to data from Corinna, Maine. An Administrative Report for EPA Region 1
https://clu-in.org/programs/21m2/projects/EPA_admin_report_02Dec2008_final.pdf
deGroot-Hedlin C., Constable S., (1990), Occam's inversion to generate smooth, two-
dimensional models from magnetotelluric data. Geophysics, Vol. 55, pp. 1613-1624
Dey A., Morrison H.F., (1979), Resistivity modelling for arbitrarily shaped three-dimensional
structures. Geophysics, Vol. 44, pp. 753-780
Doolittle J.A., Bellantoni N.F., (2010), The search for graves with ground-penetrating radar
Ellwood B.B., (1990), Electrical Resistivity Surveys in Two Historical Cemeteries in North-
east Texas: A Method for Delineating Unidentified Burial Shafts. Historical archaeology, Vol.
24, Issue 3, pp. 91-98
Fiedler S., Illich B., Berger J., Graw M., (2009), The effectiveness of ground-penetrating ra-
dar surveys in the location of unmarked burial sites in modern cemeteries. Journal of Applied
Geophysics, Vol. 68, pp. 380-385
Fischanger F., (2001/2002), tesi d laurea: “Metodi di inversione geoelettrica da misure di re-
sistività con apparecchiature multielettrodiche”. Università degli studi di Roma "La Sapien-
za”, Facoltà di ingegneria
Fischanger F., (2015), Corso Base ERT (slide), Livorno, 13 ottobre 2015. Geostudi Astier Fischanger F., Morelli G., LaBrecque D. and Occhi M., (2007), Monitoring Resins Injection
with 3D Electrical Resistivity Tomography (ERT) Using Surface and Multi‐Borehole Elec- trode Arrays. Symposium on the Application of Geophysics to Engineering and Environmen-
tal Problems, pp. 1226-1233
Giunti M. e Lorenzini G. (a cura di), (2013), Un archivio di pietra: l'antico cimitero degli in-
glesi di Livorno: note storiche e progetti di restauro, Ospedaletto (Pisa), Pacini Editore
Goodman D. and Piro S., (2013), GPR remote sensing in archaeology (Vol. 9). New York: Springer.
Goodman D., Nishimura Y., Rogers J.D., (1995), GPR time slices in archaeological prospec-
tion. Archaeological prospection, Vol. 2, Issue 2, pp. 85-89
Günther T., Rücker C., Spitzer K., (2006) Three-dimensional modelling and inversion of dc
resistivity data incorporating topography – II. Inversion. Geophysical. Journal. International,
Vol. 166, pp 506–517
Hansen J.D., Pringle J.K., Goodwin J., (2014), GPR and bulk ground resistivity survey in
graveyards: Locating unmarked burials in contrasting soil types. Forensic Science Interna-
tional, Vol. 237, pp. e14-e29
Johnson T.C., Versteeg R.J., Ward A., Day-Lewis F.D., Revil A., (2010), Improved
hydrogeophysical characterization and monitoring through parallel modeling and inversion of time-domain resistivity and induced-polarization data. Geophysics, Vol. 75, No. 4, pp.
WA27-WA41
Jol, H. M., (2009), Ground Penetrating Radar Theory and Application. Elsevier
Jones G., Zielinski M., Sentenac P., (2012), Mapping desiccation fissures using 3-D electrical
resistivity tomography. Journal of Applied Geophysics, Vol. 84, pp. 39-51
Kim J.H., Cho S.J. and Yi M.J., (2007), Removal of ringing noise in GPR data by signal pro-
cessing. Geosciences Journal, Vol. 11, No. 1, pp. 75–81.
LaBrecque D.J., Morelli G., Daily B., Ramirez A., Lundegard P., (1995), Occam’s inversion
of 3-D ERT data, in Three-Dimensional Electromagnetics, Schlumberger-Doll Research,
LaBrecque D. J., Miletto M., Daily W., Ramirez A., Owen E., (1996). The effects of noise on
Occam's inversion of resistivity tomography data. Geophysics, Vol. 61, pp. 538-548
Legault J.M., Carriere D., Petrie L., (2008), Synthetic model testing and distributed acquisi-
tion dc resistivity results over an unconformity uranium target from the Athabasca Basin, northern Saskatchewan. The Leading Edge, Vol. 27, No. 1, pp. 46-51
Li Y.G. and Oldenburg D.W., (1992), Approximative inverse mapping in DC resistivity prob-
lems. Geophysical Journal International, Vol. 109, pp. 343-362
Loke M.H., Barker R.D., (1996), Practical techniques for 3D resistivity surveys and data in-
version. Geophysical Prospecting, Vol. 44, pp. 499–523
Loke, M.H., (1999), Electrical imaging surveys for environmental and engineering studies: A
practical guide to 2-D and 3-D surveys. Penang, Malaysia.
Loke M.H., Chambers J.E., Rucker D.F., Kuras O., Wilkinson P.B., (2013), Recent develop-
ments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics.
Vol. 95, pp. 135-156
Lowrie W., (2007), Fundamentals of Geophysics (seconda edizione) Cambridge University Press
Malagodi S., Orlando L. and Piro S., (1996), Approaches to increase resolution of radar sig-
nal. Proceedings of the 6th International Conference on Ground Penetrating Radar (GPR’96),
Japan, pp. 83-88
Matias H.C., Santos F.A.M., Ferreira F.E.R., Machado C., Luzio R., (2006), Detection of
graves using the micro-resistivity method. Annals of Geophysics Vol. 49, No. 6, pp. 1235-
1243
Mazzotti, A., (2012), Note di Sismologia di Esplorazione. Laurea Magistrale in Geofisica di Esplorazione e Applicata, Dipartimento di Scienze della Terra, Università di Pisa
Morelli G., LaBrecque D.J., (1996), Advances in ERT inverse modeling. European Journal of Environmental and Engineering Geophysics, Vol. 1, pp. 171-186
Neal A., (2004), Ground-penetrating radar and its use in sedimentology: principles, prob-
lems and progress. Earth-Science Reviews, Vol. 66, pp. 261–330
Nero C., Aning A.A., Danuor S.K., Noye R.M., (2016), Delineation of graves using electrical
resistivity tomography. Journal of Applied Geophysics. Vol. 126, pp. 138-147
Neuhauser K.R., (2009), An electrical resistivity survey of a small private cemetery, Lincoln
County, Kansas. Transactions of the Kansas Academy of Science, Vol. 112, No. 1/2, pp. 15–
21.
Nobes D.C., (1999), Geophysical surveys of burial sites: a case study of the Oara Urupa. Ge- ophysics, Vol. 64, No. 2, pp. 357–367
Novo A., Badas M., Morelli G.,(2012), The STREAM X multichannel GPR system: first test at
Vieil-Evreux (France) and comparison with other geophysical Data. Archaeological Prospec-
tion, Vol. 19, Issue 3, pp. 179-189
Novo A., Leckebusch J., Goodman D., Morelli G., Piro S., Catanzariti G., (2013), Advances
in GPR Imaging with multi-channel radar systems. Journal of Surveying and Mapping Engi-
neering, Vol. 1, Issue 1, pp. 1-6
Oppenheim A.V., Schafer R.W., (2010), Discrete Time Signal Processing third edition, Pear- son
Papadopoulos N.G., Yi M.-J., Kim J.-H., Tsourlos P., Tsokas G.N., (2010), Geophysical in-
vestigation of tumuli by means of surface 3D electrical resistivity tomography. Journal of Ap-
plied Geophysics, Vol. 70 , pp. 192-205
Park S.K. and Van G.P., (1991), Inversion of pole-pole data for 3-D resistivity structure be-
neath arrays of electrodes. Geophysics, Vol. 56, pp. 951-960
Pazzi V., Tapete D., Cappuccini L., Fanti R., (2016), An electric and electromagnetic geo-
physical approach for subsurface investigation of anthropogenic mounds in an urban envi- ronment. Geomorphology, Vol. 273, pp. 335–347
Piro S., Morelli G., Novo A., Ceraudo G., and Goodman G., (2012), A GPR Array System for Fast Archaeological Mapping: STREAM X at Aquinum Roman Site (Castrocielo, Italy). Symposium on the Application of Geophysics to Engineering and Environmental Problems, pp. 322-329
Powell K., (2004), Detecting buried human remains using near-surface geophysical instru-
ments. Exploration Geophysics, Vol. 35, pp. 88–92
Pridmore D. F., Hohmann G. W., Ward S. H., Sill W. R., (1981), An investigation of finite-
element modeling for electrical and electromagnetic data in three dimensions. Geophysics,
Vol. 46, pp. 1009-1024.
Ribolini A.,(2012), Geomorfologia radar (slide delle lezioni). Laurea Magistrale in Geofisica di Esplorazione e Applicata, Dipartimento di Scienze della Terra, Università di Pisa
Sasaki Y., (1989), Two-dimensional joint inversion of magnetotelluric and dipole-dipole re-
sistivity data. Geophysics, Vol. 54, pp. 254-262
Sasaki Y., (1992), Resolution of resistivity tomography inferred from numerical simulation. Geophysical Prospecting, Vol. 40, pp. 453-464
Sasaki Y., (1994), 3-D resistivity inversion using the finite-element method. Geophysics, Vol. 59, pp. 1839-1848
Telford W.M., Geldart L.P. and Sheriff R.E., (1990), Applied geophysics: Cambridge Univer- sity Press
Terrell M., (1998), “What are you doing?” Examining a colonial period Jewish cemetery in
the Caribbean. 31st Annual Meetings of the Society for Historical Archaeology. Conference
Tikhonov A.N., Goncharsky A.V., Stepanov V.V., Yagola A.G., (1995), Numerical methods
for the solution of ill-posed problems. Kluwer Academic Publishers.
Ulriksen C.P.F., (1982), Application of impulse radar to civil engineering. Ph.D. dissertation. Department of Engineering Geology, Lund University, Sweden.
Ulryck T.J., (1971), Application of homomorphic deconvolution to seismology. Geophysics, Vol. 36, No. 4, pp. 650–660
White R.M.S., Collins S., Denne R., Hee R., Brown P., (2001), A new survey design for 3D IP
modelling at Copper hill. Exploration Geophysics, Vol. 32, No. 4, pp. 152-155
Yilmaz O., (1987), Seismic Data Analysis – Processing, Inversion and Interpretation of seis-
mic data, Volume I, Society of Exploration Geophysicists
Zhou B., Greenhalgh S.A., (2001), Finite element three-dimensional direct current resistivity
modelling: accuracy and efficiency considerations, Geophysical Journal International., Vol.
145, pp. 679-688
Zienkiewicz O.C., and Taylor R.L., (2000), The finite element method. Oxford- Boston: Bat- terworth- Heinemann Ed.