• Non ci sono risultati.

“Script” Matlab per il calcolo del profilo medio di velocità in un periodo d’onda

Pmax=max(Pturb_T); Pmin=min(Pturb_T); Pmedia=mean(Pturb_T); if Pmin>0 PRF=(Pmax-Pmin)/Pmedia; else PRF=(Pmax+Pmin)/Pmedia; end

disp('Il PRF è'), disp(PRF)

APPENDICE B

“Script” Matlab per il calcolo del profilo medio di velocità in un

periodo d’onda

clear all, close all, clc

%% Dati input

f=4; % frequenza di campionamento nell'export di fluent

Nt=80; % numero di timestep equivalente a un periodo d'onda

n_camp=Nt/f; % numero di campionamenti fatti (ogni 4 ts)

%% Importazione dei file ASCII.

% Import v-y0-1d-6604.

v_4 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6604.txt';

format = '%f %f';

file4 = fopen(v_4,'r');

dataArray = textscan(file4, format); fclose(file4); v4 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6608. v_8 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6608.txt'; format = '%f %f'; file8 = fopen(v_8,'r');

v8 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6612. v_12 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6612.txt'; format = '%f %f'; file12 = fopen(v_12,'r');

dataArray = textscan(file12, format); fclose(file12); v12 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6616. v_16 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6616.txt'; format = '%f %f'; file16 = fopen(v_16,'r');

dataArray = textscan(file16, format); fclose(file16); v16 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6620. v_20 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6620.txt'; format = '%f %f'; file20 = fopen(v_20,'r');

dataArray = textscan(file20, format); fclose(file20); v20 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6624. v_24 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6624.txt'; format = '%f %f'; file24 = fopen(v_24,'r');

dataArray = textscan(file24, format); fclose(file24);

% Import v-y0-1d-6628.

v_28 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6628.txt';

format = '%f %f';

file28 = fopen(v_28,'r');

dataArray = textscan(file28, format); fclose(file28); v28 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6632. v_32 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6632.txt'; format = '%f %f'; file32 = fopen(v_32,'r');

dataArray = textscan(file32, format); fclose(file32); v32 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6636. v_36 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6636.txt'; format = '%f %f'; file36 = fopen(v_36,'r');

dataArray = textscan(file36, format); fclose(file36); v36 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6640. v_40 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6640.txt'; format = '%f %f'; file40 = fopen(v_40,'r');

dataArray = textscan(file40, format); fclose(file40);

v_44 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6644.txt';

format = '%f %f';

file44 = fopen(v_44,'r');

dataArray = textscan(file44, format); fclose(file44); v44 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6648. v_48 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6648.txt'; format = '%f %f'; file48 = fopen(v_48,'r');

dataArray = textscan(file48, format); fclose(file48); v48 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6652. v_52 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6652.txt'; format = '%f %f'; file52 = fopen(v_52,'r');

dataArray = textscan(file52, format); fclose(file52); v52 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6656. v_56 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6656.txt'; format = '%f %f'; file56 = fopen(v_56,'r');

dataArray = textscan(file56, format); fclose(file56);

v56 = sortrows([dataArray{1:end}],1);

v_60 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6660.txt';

format = '%f %f';

file60 = fopen(v_60,'r');

dataArray = textscan(file60, format); fclose(file60); v60 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6644. v_64 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6664.txt'; format = '%f %f'; file64 = fopen(v_64,'r');

dataArray = textscan(file64, format); fclose(file64); v64 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6668. v_68 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6668.txt'; format = '%f %f'; file68 = fopen(v_68,'r');

dataArray = textscan(file68, format); fclose(file68); v68 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6672. v_72 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6672.txt'; format = '%f %f'; file72 = fopen(v_72,'r');

dataArray = textscan(file72, format); fclose(file72);

v72 = sortrows([dataArray{1:end}],1);

format = '%f %f';

file76 = fopen(v_76,'r');

dataArray = textscan(file76, format); fclose(file76); v76 = sortrows([dataArray{1:end}],1); % Import v-y0-1d-6644. v_80 = '/Users/Mattia/Desktop/Tesi/Rendering/H02_T2_i050/v-y0-1d/v-y0-1d- 6680.txt'; format = '%f %f'; file80 = fopen(v_80,'r');

dataArray = textscan(file80, format); fclose(file80);

v80 = sortrows([dataArray{1:end}],1);

% Creo una matrice unica e poi tolgo le colonne z

z=v4(:,1); v=[v4,v8,v12,v16,v20,v24,v28,v32,v36,v40,v44,v48,v52,v56,v60,v64,v68,v72, v76,v80]; for i=1:n_camp Ux(:,i)=v(:,2*i); end

%% Calcolo della velocità media per ogni coordinata e grafico

U=mean(Ux, 2); figure(1)

plot(U, z), title('Profilo di velocità-x mediato su un periodo di onda') xlabel('Ux'), ylabel('z'), grid on

2) Bibliografia

[1] N. D. Laws e B. P. Epps, «Hydrokinetic energy conversion: Techonology, research and outlook,» Elsevier, Renewable and Sustainable Energy Reviews, vol. 57, pp. 1245-1259, 2016.

[2] M. J. Khan, G. Bhuyan, M. T. Iqbal e J. E. Quaicoe, «Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review,» Elsevier, Applied Energy, vol. 86, pp. 1823-1835, 2009.

[3] L. Luznik, K. A. Flack, E. E. Lust e K. Taylor, «The effect of surface waves on the performance characteristics of a model tidal turbine,» Elsevier, Renewable Energy, vol. 58, pp. 108-114, 2013.

[4] S. F. Sufian, M. Li e B. A. O'Connor, «3D modelling of impacts from waves on tidal turbine wake characteristics and energy output,» Elsevier, Renewable Energy, vol. 114, pp. 308-322, 2017.

[5] M. M. Karim, B. Prasad e N. Rahman, «Numerical simulation of free surface water wave for the flow around NACA 0015 hydrofoil using the volume of fluid (VOF) method,» Elsevier, Ocean Engineering, vol. 78, pp. 89-94, 2014.

[6] N. Xie e D. Vassalos, «Performance analysis of 3D hydrofoil under free surface,» Elsevier, Ocean Engineering, vol. 34, pp. 1257-1264, 2006.

[7] I. G. Bryden, T. Grinsted e G. T. Melville, «Assessing the potential of a simple tidal channel to deliver useful energy,» Elsevier, Applied Ocean Research, vol. 26, pp. 198- 204, 2004.

[8] L. Myers e A. S. Bahaj, «Wake studies of a 1/30th scale horizontal axis marine current turbine,» Elsevier, Ocean Engineering, vol. 34, pp. 758-762, 2007. [9] R. L. Stockstill, «Hydraulic Design of Channels Conveying Supercritical Flows,» US

Army Corps of Enginners, 2006.

[10] J. I. Whelan, J. M. R. Graham e J. Peirò, «A free-surface and blockage correction for tidal turbines,» J. Fluid Mech., vol. 624, pp. 281-291, 2009.

[11] C. Garrett e P. Cummins, «The efficiency of a turbine in a tidal channel,» J. Fluid Mech., vol. 588, pp. 243-251, 2007.

[12] M. R. Shives, «Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines,» Thesis of Master of Applied Science, Department of Mechanical Engineering, Carleton University, 2008.

[13] T. Kinsey e G. Dumas, «Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines,» Elsevier, Renewable Energy, vol. 103, pp. 239- 254, 2017.

[14] C. A. Consul, R. H. J. Willden e S. C. McIntosh, «Blockage effects on the hydodynamic performance of a marine cross-flow turbine,» Philosophical Transaction of the Royal Society A, 2013.

[15] S. C. McIntosh, C. Fleming e R. H. J. Willden, «Report on model setup for horizontal axis axial flow turbines,» Energy Techologies Institute, University of Oxford, 2010 (https://www.eti.co.uk/programmes/marine?_type=eti-

[16] C. F. Fleming, S. C. McIntosh e R. H. J. Willden, «Performance and wake structure of a full-scale horizontal axis axial flow turbine,» Energy Technologies Institute,

University of Oxford, 2012 (https://www.eti.co.uk/programmes/marine?_type=eti- document&query=&programmeName%5B0%5D=Marine#search-block).

[17] C. A. Douglas, G. P. Harrison e J. P. Chick, «Life cycle assessment of the Seagen marine current turbine,» Department of Engineering and Electronics, University of Edinburgh, UK, 2008. [Online]. Available: DOI: 10.1243/14750902JEME94.

[18] A. H. Birjandi, E. L. Bibeau, V. Chatoorgoon e A. Kumar, «Power measurement of hydrokinetic turbines with free-surface and blockage effect,» Elsevier, Ocean Engineering, vol. 69, pp. 9-17, 2013.

[19] N. Kolekar e A. Banerjee, «Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects,» Elsevier, Applied Energy, vol. 148, pp. 121-133, 2015.

[20] P. Aghsaee e C. D. Markfort, «Effects of flow depth variations on the wake recovery behind a horizontal-axis hydrokinetic in-stream turbine,» Elsevier, Renewable Energy, vol. 125, pp. 620-629, 2018.

[21] L. P. Chamorro, R. E. A. Arndt e F. Sotiropoulos, «Reynolds number dependece of turbulence statistics in the wake of wind turbines,» Wind Energy, vol. 15, n. 5, pp. 733-742, 2012.

[22] P. Bashant e M. Wosnik, «Characterising the near-wake of a cross-flow turbine,» Journal of Turbolence, vol. 16, pp. 392-410, 2014.

[23] V. F. C. Rolin e F. Porté-Agel, «Experimental investigation of vertical-axis wind- turbine wakes in boundary layer flow,» Elsevier, Renewable Energy, vol. 118, pp. 1- 13, 2018.

[24] M. Boundreau e G. Dumas, «Comparison of the wake recovery of the axial-flow and cross-flow turbine concepts,» Elsevier, Journal of Wind Engineering and Industrial Aerodynamics, vol. 165, pp. 137-152, 2017.

[25] B. Gaurier, G. Germain, J. V. Facq e T. Bacchetti, «Wave and current flume tank of IFREMER at Boulogne-sur-mer,» https://doi.org/10.13155/58163, 2018.

[26] W. Sheng, R. Alcorn e T. Lewis, «Physical modelling of wave energy converters,» Elsevier, Ocean Engineering, vol. 84, pp. 29-36, 2014.

[27] D. Coiro, F. Nicolosi, A. De Marco, S. Melone e F. Montella, «Dynamic Behaviour of a Novel Vertical Axis Tidal Current Turbine: Numerical and Experimental

Investigations,» Università di Napoli Federico II, 2005.

[28] D. P. Coiro, A. De Marco, F. Nicolosi, S. Melone e F. Montella, «Dynamic Behaviour of the Patented Kobold Tidal Current Turbine: Numerical and Experimental

Aspects,» Acta Polytechnica, vol. 45, n. 3, 2005.

[29] «Cybernauta,» 2014. [Online]. Available: https://www.paolociraci.it/meteo- nautica/onde.htm.

[30] J. H. Kim, S. H. Kwon, K. S. Yoon, D. H. Lee e G. Chung, «Hydraulic Experiment for Friction Loss Coefficient in Non-circular Pipe,» Elsevier, Procedia Engineering, vol. 156, pp. 773-778, 2016.

[32] A. Buchner, T. Knapp, M. Bednarz, P. Sinn e A. Hildebrandt, «Loads and dynamic response of a floating wave energy converter due to regular waves from CFD simulations,» ASME, 35th International Conference on Ocean, Offshore and Artic Engineering, Busan, South Korea, 2016.

[33] D. S. Jang, R. Jetli e S. Acharya, «Comparison of the PISO, SIMPLER and SIMPLEC algorithms for the treatment of the pressure-velocity coupling,» Numerical Heat Transfer, vol. 10, n. 3, pp. 209-228, 1986.

[34] F. Mishriky e P. Walsh, «Towards understanding the influence of gradient reconstruction methods on unstructured flow simulations,» Transactions of the Canadian Society for Mechanical Engineering, vol. 41, n. 2, pp. 169-179, 2017. [35] M. Longone, «Simulazione CFD di flussi bifase olio viscoso-acqua in condotti

orizzontali con brusche variazioni di sezione,» Tesi Politecnico di Milano, 2015. [36] T. A. De Jesus Henriques, S. C. Tedds, A. Botsari, G. Najafian, T. S. Hedges, C. J.

Sutcliff, I. Owen e R. J. Poole, «The effects of wave-current interaction on the

performance of a model horizontal axis tidal turbine,» Elsevier, International Journal of Marine Energy, vol. 8, pp. 17-35, 2014.

[37] G. B. Whitham, Linear and Nonlinear Waves, New York: John Wiley and Sons Inc., 1974.

[38] T. S. Hedges, «Combination of waves and current: an introduction,» P.I. Civil Eng., vol. 82, n. 3, pp. 567-585, 1987.

[39] R. Dean e R. Dalrymple, Water Wave Mechanics for Engineers and Scientists, New Jersey: Prentice-Hall Inc., 1984.

[40] T. S. Hedges, «Regions of validity of analytical wave theories,» P. I. Civil Eng., vol. 112, pp. 111-114, 1995.

[41] S. Letizia e S. Zanforlin, «Hybrid CFD-source terms modelling of a diffuser-

augmented vertical axis wind turbine,» Elsevier, Energy Procedia, vol. 101, pp. 1280- 1287, 2016.

[42] B. Rocchio, S. Deluca, M. V. Salvetti e S. Zanforlin, «Development of a BEM-CFD tool for Vertical Axis Wind Turbines based on Actuator Disk model,» Elsevier, Energy Procedia, vol. 148, pp. 1010-1017, 2018.

[43] W. Z. Shen, J. H. Zhang e J. N. Sorensen, «The actuator surface model: a new Navier- Stokes based model for rotor computations,» Journal of Solar Energy Engineering, vol. 131, n. 1, 2009.

[44] A. Verona, «Analisi mediante modello BEM-CFD dei carichi aerodinamici di una turbina eolica ad asse verticale da 5 MW soggetta a raffiche di vento,» Tesi di Laurea Magistrale in Ingegneria Energetica, Università di Pisa, 2017.

[45] L. A. Martinez Tossaz, M. J. Churchfield e C. Meneveau, «Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution,» Wind Energy, vol. 20, pp. 1-14, 2017.

[46] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor&Francis Group, 1980. [47] A. Choudhry, R. Leknys, M. Arjomandi e R. Kelso, «An insight into the dynamic stall

lift characteristics,» Elsevier, Experimental Thermal and Fluid Science, vol. 58, pp. 188-208, 2014.

[48] W. Sheng, R. Galbraith e F. N. Coton, «A modified Dynamic Stall Model for Low Mach Numbers,» Journal of Solar Energy Engineering, vol. 130, 2008.

[49] J. G. Leishman e T. S. Beddoes, «A semi-empirical model for dynamic stall,» Journal of the American Helicopter Society, vol. 34, pp. 3-17, 1989.

[50] P. G. Migliore, W. P. Wolfe e J. B. Fanucci, «Flow Curvature Effects on Darrieus Turbine Blade Aerodynamics,» J. Energy, vol. 4, pp. 49-55, 1980.

[51] A. Bianchini, D. Marten, A. Tonini, F. Balduzzi, C. N. Nayeri, G. Ferrara e C. O.

Paschereit, «Implementation of the "Virtual Camber" Transformation into the Open Source Software QBlade: Validation and Assessment,» Elsevier, Energy Procedia, vol. 148, pp. 210-217, 2018.

[52] M. Francesconi, «Improvement of an Actuator Line Model for Vertical Axis Tidal Turbine and sensitivity to variations of blade shape, solidity and operating

conditions,» Tesi di Laurea Magistrale in Ingegneria Energetica, Università di Pisa, 2019.

[53] W. Z. Shen, R. Mikkelsen e J. N. Sorensen, «Tip loss correction for wind turbine computations,» Wind Energy, vol. 8, pp. 457-475, 2005.

[54] P. L. Delafin, T. Nishino, A. Kolios e L. Wang, «Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbine,» Renewable Energy, vol. 109, pp. 564-575, 2017.

[55] R. E. Akins, D. E. Berg e W. T. Cyrus, «Measurements and Calculations of

Aerodynamic Torques for a Vertical-Axis Wind Turbine,» SANDIA Report, SAND86- 2164, 1987.

[56] MathWorks, «Manuale Matlab,» 2019. [Online]. Available: https://it.mathworks.com/help/matlab/index.html.

[57] D. M. Etter, Engineering Problem Solving With Matlab, Prentice Hall, 1997. [58] J. Larsen, S. Nielsen e S. Krenk, «Dynamic stall model for wind turbine airfoils.,»

Journal of Fluids and Structures, vol. 23, pp. 959-982, 2007.

[59] B. Rocchio, C. Chicchiero, M. V. Salvetti e S. Zanforlin, «A simple model for deep dynamic stall conditions,» Wind Energy, 2018.

[60] G. Buresti, Elements of Fluid Dynamics, Londra: Imperial College Press, 2012, p. 482. [61] R. Currie, B. Elrick, M. Ioannidi e C. Nicolson, «Wave Power,» University of