• Non ci sono risultati.

Plasma pharmacokinetics, faecal excretion and efficacy of pyrantel pamoate paste and granule formulations following per os administration in donkeys naturally infected with intestinal strongylidae

N/A
N/A
Protected

Academic year: 2021

Condividi "Plasma pharmacokinetics, faecal excretion and efficacy of pyrantel pamoate paste and granule formulations following per os administration in donkeys naturally infected with intestinal strongylidae"

Copied!
7
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Veterinary

Parasitology

j o ur na l h o me p a g e:w w w . e l s e v i e r . c o m / l o c a t e / v e t p a r

Plasma

pharmacokinetics,

faecal

excretion

and

efficacy

of

pyrantel

pamoate

paste

and

granule

formulations

following

per

os

administration

in

donkeys

naturally

infected

with

intestinal

strongylidae

Cengiz

Gokbulut

a,∗

,

Dilek

Aksit

b

,

Giorgio

Smaldone

c

,

Ugo

Mariani

d

,

Vincenzo

Veneziano

c

aDepartmentofMedicalPharmacology,FacultyofMedicine,BalikesirUniversity,Balikesir,Turkey

bDepartmentofPharmacologyandToxicology,FacultyofVeterinaryMedicine,BalikesirUniversity,Balikesir,Turkey

cDepartmentofVeterinaryMedicineandAnimalProduction,UniversityofNaplesFedericoII,Naples,Italy

dIstitutoZooprofilatticoSperimentaledelMezzogiorno,BeneventoUnit,Portici,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21April2014

Receivedinrevisedform17June2014

Accepted19June2014 Keywords: Pharmacokinetics Efficacy Pyrantel Paste Granule Donkey

a

b

s

t

r

a

c

t

Theplasmadisposition,faecalexcretionand efficacyof twoformulationsof pyrantel pamoateindonkeyswereexaminedinacontrolledtrial.Threegroupsofsevendonkeys receivedeitherno medication (control) orpyrantel pasteor granule formulationsat horsedosageof20mg/kgB.W.(equals6.94mg/kgPYRbase)ofbodyweight.Heparinized bloodand faecalsampleswere collectedat varioustimesbetween1 and 144hafter treatment. The samples were analysed byhigh-performance liquid chromatography. Thelastdetectableplasmaconcentration(tmax)ofpasteformulationwas significantly earlier(36.00h)comparedwithgranuleformulation(46.29h).Although,therewasno significantdifferenceon terminalhalflives(t1/2:12.39hvs.14.86h),tmax (14.86hvs. 14.00)andMRT(24.80hvs.25.44h)values;theCmax (0.09␮g/ml) AUC(2.65␮gh/ml) valuesofpasteformulationweresignificantlylowerandsmallercomparedwiththoseof granuleformulation(0.21␮g/mland5.60␮gh/ml),respectively.Thehighestdryfaecal concentrationswere710.46␮g/gand537.21␮g/gandweredeterminedat48hforboth pasteandgranule formulationofPYR indonkeys,respectively.Pre-treatment EPGof 1104,1061and1139wereobservedforthecontrol,PYRpasteandPYRgranulegroups, respectively.Pre-treatmentEPGwerenotsignificantlydifferent(P>0.1)betweengroups. Post-treatmentEPGforbothPYRtreatmentgroupsweresignificantlydifferent(P<0.001) fromthecontrolgroupuntilday35.FollowingtreatmentsthePYRformulationswere efficient(>95%efficacy)untilday28.Inallstudieddonkeys,coproculturesperformedat day—3revealedthepresenceofCyathostomes,S.vulgaris.Faecalculturesperformedon differentdaysfromC-groupconfirmedthepresenceofthesamegenera.Coprocultures fromtreatedanimalsrevealedthepresenceoffewlarvaeofCyathostomes.

©2014ElsevierB.V.Allrightsreserved.

∗ Correspondingauthor.Tel.:+902666121461;

fax:+902666121448.

E-mailaddresses:cengizgokbulut@yahoo.com,cgokbulut@gmail.com

(C.Gokbulut).

1. Introduction

Pyrantel (PYR) is an imidazothiazole derivative, which belongs to the tetrahydropyrimidine group of anthelmintics. PYR is available as tartrateand pamoate http://dx.doi.org/10.1016/j.vetpar.2014.06.026

(2)

(syn.embonate)salts.DifferentsaltsofPYRhavedifferent pharmacokinetic properties and consequently different toxicitiestothehost.Thepamoatesaltisalmostinsoluble inwater,poorlyabsorbedfromthegastrointestinaltract, andmostpassesunchangedinthefaeces(Arundel,1983). Reducedsystemicabsorptionofthepamoateform poten-tiallyincreasesavailabilityinthelumenoftheintestine (Bjorn et al., 1996). The tartrate salt of PYR is soluble inwater andabsorbedrapidlyandextensivelyfromthe intestineofmonogastricanimals(Faulkneretal.,1972).

ThedailyadministrationofPYRtartratetohorsesata continuouslowlevelwashighlyeffectiveagainstcommon equineparasites,includingadultlargestrongyles (Strongy-lusvulgaris,Strongylusedentatus,andTriodontophorusspp.), adult small strongyles (Cyathostomum spp., Cylicocyclus spp.,andCylicostephanusspp.)andadultandfourth-stage Parascarisequorum(Valdezetal.,1995).It wasreported thattherecommendeddoselevelofPYR(13.2mg/kg, body-weight)pamoatepasteformulationwaseffective(95–98%) againstinfectionsofAnoplocephalaperfoliata(FDA,2005). Moreover,arecentinvestigationbyReinemeyeretal.,2010 indicatedthatPYRpamoatepasteformulationwashighly effectiveagainstadult(91.2%)andfourth-stageOxyrusequi larvae(>99%).

Onlylimiteddataareavailableonthe pharmacokine-tics andefficacy ofanthelminticdrugs usedin donkeys becausedonkeysareoftenaneglectedspeciesforstudiesin domesticanimals.Mostofdrugsindifferentclassesusedin horsesandruminantsarecommonlyextrapolatedforuse indonkeyswithoutoptimizationofdosingregimensand determinationofpharmacokineticproperties(Veneziano et al.,2011).Because of thelackof drugs approved for useindonkeys,anthelminticslicensedforusein horses orruminantsareusedatthesamedosagesfortreatment of parasitic infections in donkeys.It hasbeen reported thatdonkeyshaveagreatercapacitytometabolizecertain drugs,comparedwiththecapacityforhorses;thus,higher dosagesorshorterintervalscouldberequiredtomaintain effectivedrugconcentrationsindonkeys(Welfare etal., 1996; Matthewsetal., 1997;Coakley etal., 1999; Peck etal.,2002;Lizarragaetal.,2004;Grosenbaughetal.,2011). Hence,inthepresentstudy,thepharmacokinetic dispo-sition, faecalexcretion andanthelminticefficacyof two differentformulations(pasteandgranule)ofPYRpamoate arereportedindonkeysnaturallyinfectedwithintestinal strongylidaeafteroraladministration.

2. Materialsandmethods 2.1. StudyAnimals

Twenty-onefemalecrossbreeddonkeys(Equusasinus) weighing200–280kgwereusedinthisstudy.The body-weight(BW)ofeachanimalwasestimated1daypriorto treatment(day—1)usingthenomogramproposedbyThe DonkeySanctuary(2003).Theanimalshadameanageof 9.8 (±1.5)years and theyhad a history ofgrazing pas-turecontaminated withequine nematodeparasites and havenotbeentreatedwithanyanthelminticsduringthe previous9months.Faecalexaminations(individualFaecal EggCountsandpooledcoproculture)performedbeforethe

beginningofthestudy(day—3)showedindividualcounts >150eggspergram(EPG)andahighprevalenceof intesti-nalnematodes(Cyathostomes, S.vulgaris) in allstudied donkeys.Thestudyanimalsweretaggedforidentification andhousedcommunallyinanindoorpenuntiltheday0of thetrial.Theanimalswerekeptindoorsandfedhay-based diet.Waterwasprovidedadlibitumthroughoutthecourse ofthestudy.ThisinvestigationwasapprovedbytheAnimal EthicCommitteeofUniversityofNaplesFedericoII. 2.2. Experimentalgroups

Onday—3,21oftheexperimentaldonkeyshadan aver-age of 1101±583 EPG. The animals were ranked from lowest tohighest EPG counts. Based onincreasing EPG counts,replicatesof3animalswereformed.Withineach replicate,animalswererandomlyassignedtotreatment. The21selecteddonkeyswereassignedconsecutivelytothe followingtreatmentgroupsof7animalseach:PYRpaste treatedgroup(PYR-Pgroup),PYR granuletreated group (PYR-G-group),anduntreatedcontrolgroup(C-group). 2.3. Drugadministration

Commercially available equine formulations of PYR paste(StrikePYRpastepamoate38%,Acme,Italy)andPYR pamoategranulate(Strike,PYRpamoate20%,Acme,Italy) licensedforhorseswereadministeredorallytodonkeysat arecommendeddosagerateof20mg/kgB.W.whichequals 6.94mg/kgPYRbase.

2.4. Samplingprocedure

Heparinizedbloodsampleswerecollectedbyjugular venipuncturepriortodrugadministrationand1,2,4,8, 12,16,24,30,36,48,56,72,96,120and144hthereafter. Faecalsamples(>10g)werecollectedperrectum through-outtheblood-samplingperiod,beforedrugadministration andthenat4,8,12,16,24,30,36,48,56,72,96and120h inordertodeterminefaecalexcretionofPYRunderstudy. Bloodsampleswerecentrifugedat1825×gfor30minand plasmawastransferredtoplastictubes.Alltheplasmaand faecalsampleswerestoredat−20◦C untilestimationof

drugconcentration. 2.5. Analyticalprocedure

TheparentcompoundofPYRwasanalysedbyhigh per-formanceliquidchromatography(HPLC).Theliquid–liquid phaseextractionprocedureusedforPYRwasadaptedfrom thatdescribedbyMcKellaretal.(1993a).Briefly,1ml drug-freeplasmasampleswerefortifiedwithPYRstandardto reachthefollowingfinal concentrations:0.01, 0.05,0.1, 0.5,1and5␮g/ml.Morantelcitratewasusedasan inter-nalstandard.Sodiumhydroxide(NaOH)(0.5ml,0.4M)was addedtotubes.Aftervortexfor15s,6mlchloroformwas added.Thetubeswereshakenfor2min.After centrifuga-tionat2000×gfor15min,4mloftheorganicphasewas transferredtotheglasstubeandevaporatedtodrynessat 43(Cinasampleconcentrator—Maxi-dryplus,HetoLab. Equipment,Denmark).Thedry residuewasdissolvedin

(3)

300␮lofthemobilephaseand100␮lofthissolutionwas injectedintothechromatographysystem.

Faecal material was mixed with a spatula to obtain ahomogeneoussample.Drug-freefaecalsamples(0.5g) werefortifiedwithPYRstandard toreachthefollowing finalconcentrations:1,5,50,100,and300␮g/g. Moran-telcitratewasusedasaninternalstandard.Acetonitrile (2ml)wasaddedtotubescontaining0.5gfortifiedblank samplesandexperimentalsamples.Aftervortexfor15s, 6ml chloroformwas added.The tubes wereshakenfor 2min.Aftercentrifugationat2000×gfor15min,4mlof theorganicphasewastransferredtoaglasstubeand evap-oratedtodrynessat43(Cinthesampleconcentrator.The dryresiduewasdissolvedin300␮lor5mlofthemobile phaseand50␮lofthissolutionwasinjectedintothe chro-matographysystem.BecauseofthephotosensitivityofPYR allpreparativeprocesseswereconductedincovered con-tainers.Todeterminethedryweightofwetfaecalsamples, 1.0gofwetfaecesfromeachsamplewasweighedexactly intoanevaporatingbowlandheatedinanovenat70◦Cfor 10h.Theweightofeachsamplewasdeterminedandthe percentageofeachdrysamplewascalculated.

IntheHPLCsystem,amobilephaseofacetonitrile:water (30:70)with0.6%(v/v)triflouroaceticacid(TFA)pumped (1100 Series QuatPump,Agilent, Waldron, Germany) at flowrate1ml/minwasusedforplasmasamplesand ace-tonitrile:water (15:85) with 0.6% (v/v) TFA pumped at flowrate1.4ml/minwasusedforfaecalsamples.A nucle-osilC18analyticalcolumn(Luna,4␮m,150mm×4.6mm,

Phenomenex,Macclesfield,Cheshire, UK)withnucleosil C18 guard column(Phenomenex, Macclesfield,Cheshire,

UK)wasusedwithultravioletdetection(1100SeriesPDA detector,Agilent,Waldron,Germany)atawavelengthof 322nm.

The analytical methods used for PYR in plasma and faecalsampleswerevalidatedpriortothestartofthe stud-ies.Theanalytewasidentifiedwiththeretentiontimesof purereferencestandard.Recoveriesofthemoleculeunder studyweremeasuredbycomparisonofthepeakareasof spikedplasmaandfaecalsampleswiththeareasresulting fromdirectinjectionsofstandardspreparedinacetonitrile. Theinter-andintra-assayprecisionoftheextractionand chromatographyprocedureswereevaluatedbyprocessing replicatealiquotsofdrug-freedonkeyplasmaandfaecal samplescontainingknownamountsofthedrugson differ-entdays.

CalibrationgraphforPYRwasprepared(linearrange 0.01–5␮g/mlinplasmaand1–300␮g/mlfaecalanalysis). Theslopeofthelinesbetweenpeakareasanddrug concen-trationwasdeterminedbyleastsquareslinearregression andcorrelationcoefficient(r)andcoefficientofvariations (CV) calculated. Linearity wasestablished to determine thePYRconcentration/detectorresponserelationship.The detectionlimitofPYRwasestablishedwithHPLC analy-sisofblankplasmafortifiedwiththestandard,measuring

thebaselinenoiseattheretentiontimeofthepeak.The meanbaselinenoiseatthepeakretentiontime,plusthree standard deviations was defined as the detection limit (LOD).Themeanbaselinenoiseplussixstandarddeviations wasdefinedasthelimitofquantification(LOQ).

2.6. Coprologicalexaminationsandanthelminticefficacy According to generalrecommendations proposed by Nielsenetal.(2010)faecalsamplesweretakenfromthe rectumfromeachstudyanimal,werestoredina refrig-erator(4◦C)andindividualfaecaleggcounts(FEC)were performed,within12hbeforethestartofthetrial(day—3), atdays0,7,14,21,28,35,42and56aftertreatment. Indi-vidualfaecaleggcountsweredeterminedusingamodified McMastertechniquewithadetectionlimitof10EPG,using aSheather’ssaturatedsugarsolutionwithaspecificgravity of1.260(MAFF,1986).

Oneachsamplingday,individualfaecalsampleswere incubatedat27◦Cfor7–10daysforlarvalidentification. Onlybeforethestartofthetrial(day–3)wereperformed pooled coprocultures.Thirdstagelarvaewereidentified usingthemorphologicalkeysproposedbyMAFF(1986). Whenacoproculturehad100orfewerthirdstagelarvae, allwereidentified;whenacoproculturehadmorethan100 larvae,only100wereidentified.

To determine the efficacy of PYR against intestinal strongyles at each faecal samplingtime, thearithmetic meanofEPGwascalculated.FollowingtheAmerican Asso-ciation of Equine Practitioners (AAEP) Parasite Control Guidelines(Nielsenetal.,2013a),foreachanimalspercent efficacy(%)wascalculatedin termsof faecalEggCount Reduction (FECR)at thedifferentdays accordingtothe formula:

FECR(%)= MeanEPG(beforetreatment)−MeanEPG(aftertreatment) MeanEPG(beforetreatment) ×100

2.7. Pharmacokineticsandstatisticalanalysisofdata The plasma concentration vs. time curves obtained after each treatment in individual animals, were fit-tedwiththeWinNonlinsoftware program(Version 5.2, PharsightCorporation,MountainView,CA,USA).The phar-macokineticsparametersforeach animalwereanalysed usingnon-compartmentalmodelanalysis.Themaximum plasma concentration (Cmax) and time to reach

maxi-mumconcentration(tmax)wereobtainedfromtheplotted

concentration-timecurveofeachdrugineachanimal.The trapezoidalrulewasusedtocalculatetheareaunderthe plasmaconcentrationtimecurve(AUC):

AUC0→∞= n



i=1 Ci+Ci−1 2 ×(ti−ti−1)+ Cn z

WhereCrepresentstheplasmaconcentration,i-1and iareadjacentdatapointtimes.Theareaunderthefirst

(4)

movementcurve(AUMC)wascalculatedusingthe equa-tion: AUMC0→∞= n



i=1 Citi+Ci−1ti−1 2 ×(ti−ti−1)+



Cn 2 z +tnCn z



Thus,themeanresidencetime(MRT)wascalculatedas: MRT0→∞=AUMC0→∞/AUC0→∞

Terminal half-life (t1/2z) was calculated

as:t1/2z=−ln(2)/z

Where␭zrepresentthefirstorderrateconstant associ-atedwiththeterminal(loglinear)portionofthecurve.

The pharmacokinetic parameters are reported as mean±SD.Meanpharmacokineticparameterswere statis-ticallycomparedbyone-wayanalysisofvariance(ANOVA). AllstatisticalanalyseswereperformedbyusingMINITAB forWindows(release12.1,MinitabInc.,StateCollege,PA, USA).Meanvalueswereconsideredsignificantlydifferent atP<0.05.

Forcomparisonoftheanthelminticefficacyofboth for-mulations,statisticalanalysisofdata wasperformedon arithmeticmean(AM)EPGcountsusingtheparametric t-testtocomparedifferencesbetweentreatmentgroupsfor significanceattheP<0.01level.

3. Results

The analytical procedures and HPLC analysis of PYR werevalidatedforplasmaandfaecalanalysis.Thelinear rangeswere0.01–5␮g/mlforplasmaand1–300␮g/ml fae-calanalysisandshowedcorrelationcoefficientsof0.999 and0.998,respectively.ThemeanrecoveryofPYRfrom plasmaandfaecalsampleswere72.72%and83.56%, respec-tively.Thedetectionlimitoftheanalyticaltechniquewas 0.002␮g/mland0.25␮g/ml;thequantificationlimitwas 0.01␮g/mland1.00␮g/mlforplasmaandfaecalsamples, respectively. Theinterand intra-assay precisions ofthe analyticalprocedureobtainedafterHPLCanalysisofspiked standardsofPYR(0.01–5␮g/ml)showedaCVof4.22%and 6.54%forplasmaand6.12%and7.55%forfaecalsamples, respectively.

Mean pharmacokinetic parameters of PYR, adminis-teredorallyaspasteandgranule,are showninTable1, withtheplasmaconcentrationvs.time curves inFig.1. PYRwasdetectedinplasmasamplesbetween2hand36h afterpasteadministrationand1hand48haftergranule administration.Thelastdetectableplasmaconcentration of paste formulation was significantly earlier (36.00h) compared withgranuleformulation(46.29h).Although, therewasnosignificantdifferenceonterminalhalflives (t1/2: 12.39h vs. 14.86h), tmax (14.86hvs. 14.00h) and

MRT(24.80hvs.25.44h)values;theCmax(0.09␮g/mlvs.

0.21␮g/ml)andAUCvalues(2.65␮gh/mlvs.5.60␮gh/ml) weresignificantlydifferentindonkeysreceivedpaste for-mulation compared with the animals received granule formulation,respectively.Meankineticparametersof dry-faecesconcentrationsafterpasteandgranuleformulations are shown in Table 2 with the dry-faecal concentra-tionvs. time curves(Fig.2).PYRwasdetectedin faecal

Table1

Mean(±SD)pharmacokineticparametersofpyrantel(PYR)pamoatepaste

andgranulefollowingperosadministrationtodonkeysat20mg/kgB.W.

(equals6.94mg/kgPYRbase)bodyweight.

Parameters PYRgroups

Paste Granule t1/2z(h) 12.39±5.35 14.86±5.59 Cmax(␮g/ml) 0.09±0.02* 0.21±0.07 tmax(h) 14.86±5.52 14.00±9.45 tlast(h) 36.00±0.00* 46.29±4.53 AUClast(␮gh/ml) 2.65±0.81* 5.60±0.59 AUMClast(␮gh2/ml) 68.30±36.04* 143.68±64.72 MRTlast(h) 24.80±5.54 25.44±10.68

Cmax:peakplasmaconcentration;tmax:timetoreachpeakplasma con-centration;AUClast:areaunderthe(zeromoment)curvefromtime0to thelastdetectableconcentration,AUMClast:areaunderthemomentcurve fromtime0totlastdetectableconcentration;MRTlast:meanresidence time;t1/2z:terminalhalf-life.

MeankineticparametersobtainedfollowingPYRpasteadministration significantlydifferent(*P<0.01)fromthoseobtainedfollowingPYR gran-uleadministration. 0 5 10 15 20 25 30 35 40 45 50 55 60 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Pl asma co nc en trati ons ( μ g/ ml ) Time (h) Paste Granule

Fig. 1.Mean (±SD) plasma concentration (␮g/g) of pyrantel (PYR) pamoatepasteandgranulefollowingoraladministrationtodonkeysat adoserateof20mg/kgB.W.(equals6.94mg/kgPYRbase)bodyweight.

samplesbetween16hand120h.BothPYRformulations displayedasimilarfaecalexcretionprofilesfollowingoral administration.Thehighestdryfaecalconcentrationswere 710.46␮g/gand537.21␮g/gandweredeterminedat48h

Table2

Mean(±SD)faecalkineticparametersofpyrantel(PYR)pamoatepaste andgranulefollowingperosadministrationtodonkeysat20mg/kgB.W. (equals6.94mg/kgPYRbase)bodyweight.

Parameters PYRgroups

Paste Granule tmax(h) 46.00±9.73 47.43±5.86 Cmax(␮g/g) 839.13±212.98 650.39±264.00 tlast(h) 102.86±11.71 109.71±12.83 AUClast(␮gh2/g) 29,765.56±4687.66 26,414.17±8184.14 MRTlast(h) 48.43±5.89 53.68±8.18

Cmax:peakfaecalconcentration;tmax:timetoreachpeakfaecal concen-tration;AUClast:areaunderthe(zeromoment)curvefromtime0tothe lastdetectableconcentration;tlast:timetolastdetectablefaecal concen-tration;MRTlast:meanresidencetime;

(5)

0 20 40 60 80 100 120 100 200 300 400 500 600 700 800 900 1000 F aecal c on cent rat ions ( µ g/ g) Time (h) Paste Granule

Fig.2. Mean(±SD) dry-faecalconcentration(␮g/g)ofpyrantel(PYR) pamoatepasteandgranulefollowingoraladministrationtodonkeysat adoserateof20mg/kgB.W.(equals6.94mg/kgPYRbase)bodyweight.

forbothpasteandgranuleformulationofPYRindonkeys, respectively.

Clinically, no adverse reaction was observed in any ofthedonkeys treatedwithPYR duringthestudy. Pre-treatmentEPGof1104,1061and1139wereobservedfor thecontrol,PYR pasteand PYR granulegroups, respec-tively.AtthestartofthestudythepretreatmentEPGwere notsignificantlydifferent(P>0.1)betweengroups.Total EPGcountsandefficacyvaluesforbothtreatedgroups com-paredwiththecontroluntreatedgroup(C-group)ateach timestudypointsareshowninTable3.Theresultsofthe post-treatmentEPGforbothPYRtreatmentgroupswere significantlydifferent(P<0.001) fromthecontrol group untilday35followingtreatments.ThePYRformulations wereefficient(>95%efficacy)ondays7,14,21untilday28. Therewasnosignificantdifferenceinanthelminticefficacy betweenthetwoPYRformulations.

In all studied donkeys, coprocultures performed at day—3revealedthepresenceofCyathostomesandS. vul-garis. Faecal cultures performedon differentdays from C-groupconfirmedthepresenceofthesamegenera. Copro-culturesfromtreatedanimalsrevealedthepresenceoffew larvaeofCyathostomesinbothPYRgroups.

4. Discussion

Although,PYRhasbeenusedasananthelminticdrug for almost a half century, there is a paucity of data availablein the literatureon thepharmacokinetics and comparativeefficacyofdifferentformulationsindomestic animalsincludingequidspecies.Therapeuticequivalence was demonstrated for PYR pamoate oral formulations paste and granule based on FECR test. In this study, bothPYR formulationswerehighly effectiveagainstthe intestinalstrongylidaeofdonkeysuntilday28post treat-ment.Thecutoffvalues(meanpercentreductioninFEC) for interpreting results of strongyle FECRT suggested in the guidelines of the AAEP for pyrantel, reported a range of 94–99% effectiveness expected in the absence ofresistanceinhorses.Thecyathostominandstrongylid nematodespresentinthestudieddonkeyswereapparently

susceptibletopyrantelpamoate,asconfirmedbyFECR val-ues.Thepercentagereductionsinfaecaleggcountsforthe PYRpastegroup,comparedtotheC-group,were98.3%on day7;98.5%onday14;98.2%onday21and96.6%onday 28.

Thepercentagereductionsinfaecaleggcountsforthe PYRgranulegroup,comparedtotheC-group,were97.1% onday7;97.3%onday14;96.3%onday21and96.4%onday 28.Thevaluesofefficacyinthepresentstudyperformedon thedonkeyareclosetothosesuggested(92%)byNielsen etal.,2013btoevaluatetheexpectedefficacyofpyrantel againststrongyleparasitesinhorses.TheEgg Reappear-ancePeriod(ERP)ofPYRinthehorsesisnotexpectedto exceed4weeks(ReinemeyerandNielsen,2013);theERPs of PYRpamoate pasteandgranuleformulations follow-ingperosadministrationindonkeysarefairlysimilarto thatnotedinhorseswithPYR-susceptiblepopulationsof nematodesandtreatedatsimilardosages.

Theresultsobtainedinboth treated groupsare con-sistent withthecurrentlyapproved labelclaim for PYR oralformulationsagainstintestinalstrongyleparasitesof horses.ThemodeofadministrationofPYRwouldnotseem toaltertheanthelminticefficacyindonkeys.

Even though, the pharmaceutical formulation of anthelmintic drugs may affect itsbioavailability, which dependsontherateandextentofabsorptionofthedrug fromthegastrointestinaltractintothebloodstream.The pharmacokineticresultsofthepresentstudyobtainedafter perosadministrationofthepasteformulationdiffer sub-stantiallyfromthegranuleformulationofPYRindonkeys atthesamedoserate.Theplasmalevel ofPYRis much lowerfollowingadministrationofpasteformulationthan those observed following granule administration. After oral administration, Cmax (0.09␮g/ml) was significantly

lower(P<0.01)andAUC(2.65␮gh/kg)smaller(P<0.01) for PYRpastethanPYRgranule(Cmax: 0.21␮g/ml,AUC:

5.60␮gh/kg)givenatsamedoserates(6.94mg/kgB.W.). Itislikelythatthepoorerdissolutionofpasteformulation reducesitsabsorptioncomparedwithgranuleformulation indonkeys.

TheresultsofPYRinthepresentstudydiffer substan-tially fromthosepreviously reportedbyGokbulutet al. (2001)inhorsesatsameformulationandadministration route.Inthepreviousstudy,PYRpastewasadministeredat 13.3mg/kginhorses,whereasinthisstudy,itwas admin-isteredat6.94mg/kgindonkeys.Thelowerconcentrations and shorter MRTof PYRin theplasmaof horses reflect lower bioavailability and shorter persistence compared with donkeys. After correction for dose assuming pro-portionality,Cmax (0.045␮g/ml), AUC(0.53␮gh/ml)and

MRT (11.99h) values in horses much lower than those observed in the present study (Cmax: 0.09␮g/ml, AUC:

2.65␮gh/mlandMRT:24.80h).Thegastrointestinal pas-sagerateofdigestaisaffectedbyalterationinthequality and quantityofthe feedconsumed and thiscould con-fervariableabsorptiontimeandthereforebioavailability of drugsadministeredorally.It wasindicatedthat vari-ations in the quality (McKellar et al., 1993b; Knox and Steel,1997;OukessouandSouhaili,1998;Gokbulutetal., 2007)andquantity(AliandHennessy,1995;Lifschitzetal., 1997;McKellaretal.,2002;Gokbulutetal.,2010)ofdiet

(6)

Table3

Strongyleeggcountsineggspergram(EPG)andpercentagereductionsinfaecaleggcounts(FECR)fordonkeystreatedwithpyrantelpamoatepaste(PYR

P-group)andfordonkeystreatedwithpyrantelpamoategranule(PYRG-group),comparedwithcontroluntreatedgroup(C-group)ateachtimestudy

points.

Day Cgroup PYRPastegroup FECR(%) Pvalue PYRGranulegroup FECR(%) Pvalue

EPGAM EPGRange EPGAM EPGRange EPGAM EPGRange

3 1104 450–1470 1061 160–1770 – 0.8636 1139 170–2440 – 0.9220 7 849 450–1170 14 0–30 98.3 0.0000 24 0–80 97.1 0.0000 14 936 500–1340 14 0–30 98.5 0.0000 26 0–10 97.3 0.0000 21 1036 140–1450 19 0–30 98.2 0.0001 39 0–110 96.3 0.0001 28 1334 170–2030 46 0–110 96.6 0.0002 49 20–80 96.4 0.0002 35 1163 610–2000 213 20–740 81.7 0.0003 124 40–290 89.3 0.0001 42 854 90–1370 520 40–1790 39.1 0.2657 303 70–540 64.5 0.0095 49 823 90–1680 616 10–1950 25.2 0.5055 533 150–1090 35.2 0.1925 56 663 210–1130 737 80–1410 −11.2 0.7371 651 240–1410 1.7 0.9536

*Parametrict-test(PYR-groupsvs.C-group)valuesaresignificantlydifferentP<0.001—arithmeticmeans(AM).

couldaffectthebioavailabilityofanthelminticsin differ-entanimalspecies.Differencesamongthestudiesmaybe associatedwithdiettypeindonkeyscomparedwithhorses. Sinceinthepresentstudy,donkeyswerekeptindoorsand fedhay-baseddiet.Thehorseswereyardedfortheperiod duringandimmediately(4h)afterdrugadministrationand werethenreturned toa grasspaddock(Gokbulutetal., 2001). Grass-based diet probably decreased gut transit timeoffood,thustherapidpassageoffoodinthegutcauses adecreaseinthebioavailabilityofPYRinhorsescompared with those in donkeys in the present study.Moreover, anatomicfeaturesinfluencethepassageofdigesta,andthe bioavailabilityandpharmacokineticsofanthelminticsmay beaffectedbydifferentguttransittimeinanimalspecies (McKellarandScott,1990).

Parasitismcouldhavehadaneffectsincethedonkey usedinthisstudywerenaturallyinfectedwithintestinal parasitesandsuchinfectionsmayhavemodesteffectson absorptionofanthelmintics(McKellaretal.,1991), unfor-tunately the parasitological status of thehorses or the historyofanthelmintictreatmentinthepreviousstudywas unknown.

PYRisnotknowntohaveanysubstantialeffecton fae-calinvertebrates,however,itisapparentthatfaecesfrom treateddonkeyswillhavehighconcentrationsofPYRfor atleast120hforbothformulations.Thisperiodoffaecal excretionofPYRisconsiderablylongerindonkeys com-paredtointhehorses(48h)(Gokbulutetal.,2001). 5. Conclusion

The present study demonstrates relatively limited absorptionofPYR pamoatefollowingperos administra-tionaspasteorgranuleformulationsindonkeys.Although thehigherlevelandlongerpersistenceofPYRinthe gas-trointestinaltractwheretheadultstagesofmostparasitic nematodes reside after both formulations may provide higherandprolongefficacy,lowplasmalevelscouldresult in subtherapeutic plasmaconcentrations. Moreover,the donkeydiffersfromthehorseandrequiresspeciesspecific pharmacological and parasitological studies. Therefore, furtherresearchshouldbecarried outtodeterminethe optimaldosage anddosescheme forantiparasitic com-poundsindonkeys.

Acknowledgement

ThisstudywasfundedbythegrantfromtheMinistryof HealthoftheItalianRepublic(IZSME14/11RC).

References

Ali,D.N.,Hennessy,D.R.,1995.Theeffectofleveloffeedintakeon

phar-macokineticdispositionofoxfendazoleinsheep.Int.J.Parasitol.25, 63–70.

Arundel,J.,1983.VeterinaryAnthelmintics.SchoolofVeterinaryScience,

UniversityofMelbourne,Melbourne,pp.1–22.

Bjorn,H.,Hennessy,D.R.,Friis,C.,1996.Thekineticdispositionof

pyran-telcitrateandpamoateandtheirefficacyagainstpyrantel-resistant Oesophagostomumdentatuminpigs.Int.J.Parasitol.26,1375–1380.

Coakley,M.,Peck,K.,Taylor,T.S.,Matthews,N.S.,Mealey,K.L.,1999.

Phar-macokineticsofflunixinmeglumineindonkeys,mulesandhorses. Am.J.Vet.Res.60,1441–1444.

Faulkner,J.K.,Figdor,S.K.,Monro,A.M.,Schach,V.W.,Stopher,D.A.,Wood,

B.A.,1972.Thecomparativemetabolismofpyrantelinfivespecies.J.

Sci.FoodAgric.23,79–91.

FDA, 2005. Freedom of Information Summary. Supplemental NADA

200-342. FDA, http://www.fda.gov/downloads/AnimalVeterinary/ Products/ApprovedAnimalDrugProducts/FOIADrugSummaries/ucm 061808.pdf.

Gokbulut,C.,Boyacioglu,M.,Karademir,U.,Aksit,D.,2010.Theeffectof

fastingontheplasmadispositionoftriclabendazolefollowingoral administrationingoats.Res.Vet.Sci.89,415–417.

Gokbulut,C.,Karademir,U.,Boyacioglu,M.,Akar,F.,2007.Theeffectof

diettypeontheplasmadispositionoftriclabendazoleingoats.Res. Vet.Sci.82,388–391.

Gokbulut, C., Nolan, A.M., McKellar, Q.A., 2001. Pharmacokinetic

disposition and faecal excretion of pyrantel embonate follow-ing oral administration in horses. J. Vet. Pharmacol. Ther. 24, 77–79.

Grosenbaugh,D.A.,Reinemeyer,C.R.,Figueiredo,M.D.,2011.

Pharmacol-ogyandtherapeuticsindonkeys.EquineVet.Educ.23,523–530.

Knox,M.R.,Steel,J.W.,1997.Effectsofdietandspeciesonthe

pharmaco-kineticsoffenbendazoleincattle.Vet.Res.Commun.21,37–43.

Lifschitz,A.,Virkel,G.,Mastromarino,M.,Lanusse,C.,1997.Enhanced

plasmaavailabilityofthemetabolitesofalbendazoleinfastedadult sheep.Vet.Res.Commun.21,201–211.

Lizarraga,I.,Sumano,H.,Brumbaugh,G.W.,2004.Pharmacologicaland

pharmacokineticdifferencesbetweendonkeysandhorses.Equine Vet.Educ.16,102–112.

MAFF,1986.MinistryofAgriculture.FisheriesandFoodManualof

Veteri-naryParasitologicalLaboratoryTechniques,London,UK,pp.160.

Matthews,N.,Peck,K.,Taylor,T.,Ray,A.C.,Taylor,T.S.,1997.

Pharmaco-kineticsofphenylbutazoneanditsmetaboliteoxyphenbutazonein clinicallynormalhorsesanddonkeys.Am.J.Vet.Res.58,53–55.

McKellar,Q.A.,Scott,E.W.,Baxter,P.,1993a.Pharmacokinetics,

pharma-codynamicsandfaecalpersistenceofmorantelincattleandgoats.J. Vet.Pharmacol.Ther.16,87–92.

McKellar,Q.A.,Galbraith,E.A.,Baxter,P.,1993b.Oralabsorptionand

bioavailabilityoffenbendazoleinthedogandtheeffectofconcurrent ingestionoffood.J.Vet.Pharmacol.Ther.16,189–198.

(7)

McKellar,Q.A.,Gokbulut,C.,Benchaoui,H.A.,Muzandu,K.M.,2002. Fen-bendazolepharmacokinetics,metabolismandpotentiationinhorses. DrugMetab.Dispos.30,1230–1239.

McKellar,Q.A.,Jackson,F.,Coop,R.L.,Jackson,E.,Scott,E.,1991.Effect

ofparasitismwithNematodirusbattusonthepharmacokineticsof levamisole,ivermectinandnetobimin.Vet.Parasitol.39,123–136.

McKellar, Q.A., Scott, E.W., 1990. The benzimidazole anthelmintic

agents—areview.J.Vet.Pharmacol.Ther.13,223–247.

Nielsen,M.K.,Vidyashankar,A.N.,Andersen,U.V.,DeLisi,K.,Pilegaard,K.,

Kaplan,R.M.,2010.Effectsoffecalcollectionandstoragefactorson

strongylideggcountsinhorses.Vet.Parasitol.167,55–61.

Nielsen,M.K.,Mittel,L.,Grice,A.,Erskine,M.,Graves,E.,Vaala,W.,Tully,

R.C.,French,D.D.,Bowman,R.,Kaplan,R.M.,2013a.AAEPParasite

Con-trolGuidelines.AmericanAssociationofEquinePractitioners,Online atwww.aaep.org.

Nielsen,M.K.,Vidyashankar,A.N.,Hanlon,B.M.,Diao,G.,Petersen,S.L.,

Kaplan,R.M.,2013b.Hierarchicalmodelforevaluatingpyrantel

effi-cacyagainststrongyleparasitesinhorses.Vet.Parasitol.197,614–622.

Oukessou,M.,Souhaili,Z.,1998.Theeffectoffeedqualityonthekinetic

dispositionoforallyadministeredtriclabendazoleinsheep.Vet.Res. Commun.22,257–263.

Peck,K.,Matthews,N.,Taylor,T.S.,Mealey,K.L.,2002.Pharmacokinetics

ofsulfamethoxazoleandtrimethoprimindonkeys,mulesandhorses. Am.J.Vet.Res.63,349–353.

Reinemeyer,C.R.,Prado,J.C.,Nichols,E.C.,Marchiondo,A.A.,2010.Efficacy

ofpyrantelpamoateandivermectinpasteformulationsagainst nat-urallyacquiredOxyurisequiinfectionsinhorses.Vet.Parasitol.171, 106–110.

Reinemeyer,C.R.,Nielsen,M.K.,2013.Detectionofanthelmintic

resis-tance. In:Handbookofequine parasitecontrol.Wiley-Blackwell, Oxford,UK,pp.128–137.

The Donkey Sanctuary, 2003. Donkey Nomogram, Available at:

drupal.thedonkeysanctuary.org.uk/files/donkeys/Nomogram.pdf (accessedApril5,2014).

Valdez,R.A.,Dipietro,J.A.,Paul,A.J.,Lock,T.F.,Hungerford,L.L.,Todd,K.S.,

1995.ControlledefficacystudyofthebioequivalenceofStrongidC

andgenericpyranteltartrateinhorses.Vet.Parasitol.60,83–102.

Veneziano,V.,DiLoria,A.,Masucci,R.,DiPalo,R.,Brianti,E.,Gokbulut,C.,

2011.Efficacyofeprinomectinpour-onagainstDictyocaulusarnfieldi

infectionindonkeys(Equusasinus).Vet.J.190,414–415.

Welfare,R.,Mealey,K.,Matthews,N.,Taylor,T.S.,1996.Pharmacokinetics

Riferimenti

Documenti correlati

Il terzo capitolo è dedicato al lavoro di ricerca che ho potuto svolgere partecipando al laboratorio “Il Servizio Sociale nei percorsi ospedalieri e di

Gesta apud Zenophilum e Acta purgationis Felicis episcopi Autumnitani: edizione. con introduzione, traduzione

Le criticità emerse nel corso dei giorni di Genova sono legate alla qualità degli interventi, alla propensione alla violenza ed un uso prettamente punitivo ed efferato della

In questo lavoro è stato affrontato il problema dell’esternalità e l’effetto che la presenza di quest’ultima genera sulla creazione di valore, in particolare è stato preso ad

Questo perché, nonostante le similitudini e i punti di contatto tra i due movimenti, essi si trovavano in posizioni di partenza diverse: se in Inghilterra gli elementi

In un clima mediterraneo, dove è necessario lasciar il calore fuori dall’edificio, diventa ancora più importante l’idea dell’architettura passiva e di un edificio ad alta

84% Tarvisio, 9% Villa Opicina-Sesana, 1% Opicina-Trieste Linea Attuale, 1% Brennero Linea Storica, 5% Brennero tunnel di base, 2% Nuova Linea Trieste

Finally, in Chapter 6 we state and prove the extension of the theorem by Cimasoni and Conway, and we see that the result is indeed a generalization of the Gambaudo- Ghys formula