• Non ci sono risultati.

Silicone membrane contactor for selective volatile fatty acid and alcohol separation

N/A
N/A
Protected

Academic year: 2021

Condividi "Silicone membrane contactor for selective volatile fatty acid and alcohol separation"

Copied!
12
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Process

Safety

and

Environmental

Protection

j o ur na l h o me pa g e : w w w . e l s e v i e r . c o m / l o c a t e / p s e p

Silicone

membrane

contactor

for

selective

volatile

fatty

acid

and

alcohol

separation

Harish

Ravishankar

a,∗

,

Paolo

Dessì

a

,

Stefano

Trudu

b

,

Fabiano

Asunis

a,b

,

Piet

N.L.

Lens

a aDepartmentofMicrobiology,SchoolofNaturalSciencesandRyanInstitute,NationalUniversityofIrelandGalway(NUIG),UniversityRoad,Galway,H91 TK33,Ireland

bDepartmentofCivil,EnvironmentalandArchitecturalEngineering,UniversityofCagliari,ViaMarengo2,09123,Cagliari,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received6July2020 Receivedinrevisedform 22September2020 Accepted24September2020 Availableonline28September2020 Keywords:

Cheesewhey

Volatilefattyacids(VFA) Silicone

Membranecontactor

a

b

s

t

r

a

c

t

TheeffectofpHandextractiontemperatureonflux,recovery,masstransfercoefficientandseparation

factorofvolatilefattyacids(VFAs)andalcoholsfromsyntheticsolutionsandcheesewheyfermentate

wasinvestigatedusingasiliconemembranecontactorwithwaterasextractant.Thesiliconemembrane

allowedextractionofundissociatedacidsonly,resultinginsubstantiallyhigherrecoveryefficienciesatpH

3thanatpH5.Furthermore,thenon-poroussiliconemembranefavouredextractionoflongerchainover

shorterchainacids.Caproicacidwasextractedwiththehighestfluxof1.30(±0.02)gm−2h−1inshort

time(32h),witha41.5%recoveryefficiencyatpH3and20◦C,indicatingthefeasibilityofitsselective

separationfromtheVFAmixture.Asimilartrendwasobservedforalcohols,withbutanolbeingextracted

witha39%recoveryefficiencyat40◦C,against32%and19%ofpropanolandethanol,respectively,while

themasstransfercoefficientswerenotaffectedbytemperature.Whenapplyingthesiliconemembrane

contactortorealcheesewheyfermentateatpH3,butyricandaceticacidwereextractedwith21.5%and

7%recoveryefficiency,respectively,suggestingthefeasibilityofthecontactorforVFArecoveryfromreal

fermentate.

©2020TheAuthors.PublishedbyElsevierB.V.onbehalfofInstitutionofChemicalEngineers.Thisis

anopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Waste valorisationplays akeyrole incircular economythat reliesonthetransformationofvaluechainsfromlineartoclosed loop(Mainaetal.,2017).ThisisnecessarytoachieveEU’s long-termgoalofalowcarboneconomyby2050(Scarlatetal.,2015). Biologicalprocessessuchasdarkandphotofermentation(Yuan etal.,2019)havethepotentialtopartiallyreplacefossilfuel-based refineriestoproduceplatformchemicalssuchasvolatilefattyacids (VFAs)andalcohols.Hence,wasteprocessingismovingtowardsa biorefineryapproach,inwhichacombinationofphysico-chemical andbiologicalprocessesisusedtoobtainmarketableproductsfrom waste.Separationandrecoveryofthesevaluableproductsisstill amajorbottleneckduetolowconcentrationsandcomplex phys-iochemicalnatureofthefermentateanddigestate(Zacharofand Lovitt,2014).In-linerecoveryoftheseproductsfrombiological pro-cesseswouldbeadvantageousascontinuousharvestingofVFAs andalcoholswouldfacilitatetheirefficientandstableoperation (Tradetal.,2015).

∗ Correspondingauthor.

E-mailaddress:harish.ravishankar@nuigalway.ie(H.Ravishankar).

Severalseparationmethodshavebeenreportedinthe litera-ture,i.e.solventextraction,adsorption,andmembraneprocesses, including electrodialysis, reverse osmosis/nano-filtration and membraneextraction(Atasoyetal.,2018), eachhavingitsown benefitsand drawbacks.Solventextractionisa methodusedto separatecompoundsorcomplexesbasedontheirrelative solubili-tiesintwodifferentimmiscibleliquids.Differentextractantssuch astrioctylamine(TOA),trioctylphosphineoxide(TOPO),Alamine 336orN,N-didodecylpyridin-4-aminearereportedintheliterature withTOAbeingthemostused(Lietal.,2002;Alkayaetal.,2009; Reyhanitashetal.,2016).However,suchchemicalsareexpensive andrequirearegenerationstep.Furthermore,theextractantsare non-selective,andextractionofothercompoundsthanVFAs(e.g. saltsandalcohols)canresultinlowpurity.Theseextractantsare alsomostlytoxictomicroorganismsandcanthusnotbeapplied in-lineincombinationwiththebiologicalprocesses(Playneand Smith,1983).

Adsorptionisa surfacephenomenoninwhichthemolecules fromagaseousorliquidmediumadheretoa solidsurface. Ion-exchangeresinsareusedasadsorbentsforVFAadsorption(Bertin et al.,2016; Cabrera-Rodríguez et al., 2017; Reyhanitash et al., 2017)withamaximumreportedrecoveryyieldof85%from syn-theticmixtures(Rebecchietal.,2016).Adesorptionstepishowever https://doi.org/10.1016/j.psep.2020.09.052

0957-5820/©2020TheAuthors.PublishedbyElsevierB.V.onbehalfofInstitutionofChemicalEngineers.ThisisanopenaccessarticleundertheCCBYlicense(http:// creativecommons.org/licenses/by/4.0/).

(2)

H.Ravishankaretal. ProcessSafetyandEnvironmentalProtection148(2021)125–136 requiredtoobtainthefinalproducts,whichresultsindeterioration

overtime(Aktijetal.,2020),therebyincreasingtheprocesscosts. Furthermore,adsorptionisnotselectivetowardsVFAs,resultingin productscontaminatedwithanionssuchasphosphates,sulphate andchloride,commonlyfoundinbiologicalprocesses.

Membrane processes are welldocumented in the literature and have beenpreviously used forVFA separation (Aktij et al., 2020).Membranesfacilitateinseparationwhileavoidingcontact betweenthebulksolutionandthepermeate.Typically,membrane processesinvolveapplicationofhighpressure(e.g.nanofiltration and reverseosmosis; pressurerange:3.5–20bar) oran electric field(e.g.electrodialysis)acrossasemi-permeableorionexchange membrane, respectively, that separates solutessuchas salts or organicmoleculesfromthesolventandothercompounds(Aktij etal.,2020).Nanofiltrationandreverseosmosismembraneshave beeninvestigatedforVFAseparationfromdifferentmatrices,and aseparationof75–90%havebeenreportedunderoperating con-ditionsofpH3.5and5bar,andpH2.93and50bar,respectively (Xiongetal.,2015;Zhouetal.,2013).Jonasetal.(2015)applied electrodialysis forVFAseparationfroma syntheticsolutionand showed99 %recoverywithin60minof operation(Joneset al., 2015),whereasZhangandAngelidaki(2015)recovered98.3%of VFAsfromdigestedpigmanureviabipolarmembrane electrodial-ysis.However,bothprocessesareenergyintensiveandstillrequire considerableresearchtomakethemcost-effective,particularlyfor recoveryofproductsfromwastestreams,duetoproblemssuchas inhomogeneityandfouling.

Another type ofmembrane based VFA separation processis thevapourpermeationmembranecontactorthatworksonvapour pressuredifferenceandconcentrationgradient(Aydinetal.,2018). Yesil et al. (2014) studied VFAs extraction from organic solid wasteleachatesolutionsusinghydrophobic polytetrafluoroethy-lene(PTFE)membraneswithNaOHasextractantforVFAdiffusion andprecipitationassodiumsalts.Integrationofamembrane con-tactorwithaleachbedreactordemonstratedseparationofacetic, butyric and caproicacid from the leachate(Yesil et al., 2014). Aydinetal.(2018)extendedtheideaandstudiedtheapplication ofextractantfilledmembranes(PTFEmembranewithairandtwo tertiaryamine(trioctylamine(TOA)andtridodecylamine(TDDA)) forVFAsseparationfromasyntheticmixtureandafermentation brothofmunicipalorganicsolidwaste,anaerobiclandfillleachate andchickenmanuredigestate.TOA-filledPTFEmembranesshowed highremovalefficienciesforallVFAspresentinthefermentation brothandlandfillleachate,withamaximumremovalefficiencyof 86–95%forpropionic,butyric,valericandcaproicacid(Aydinetal., 2018).

OutramandZhang(2018)reportedsolventfreeseparationof VFAsusingsiliconemembraneswithwaterasanextractant.The advantagesofusingwaterincludelowercost(thansolventssuch asNaOHorTOAwithoctanol)andrecoveryofVFAsinthe undisso-ciatedform,therebyeliminatingtherequirementforacounter-ion removalprocessasinthecaseofotherreportedstudies(Aydinetal., 2018;Yesiletal.,2014;Tugtas,2014).Furthermore,foulingdidnot occuronthesiliconemembraneandtheprocessrequiresalarge membranesurfaceareaduetothelowmasstransfercoefficients ofVFAs.However,thestudydidnotlookatthediffusionofcaproic acidathighconcentrationsnoratorganicsolventssuchasalcohols. Thesearevitaltounderstandtheseparationcharacteristicswhile treatingamulticomponentsolutionsuchasfermentatewhichcan affecttheperformanceandeconomicscalabilityofthesystem.

The present study investigated the applicability of silicone membranesforVFAand alcoholseparationfromsynthetic solu-tionsand amodel anaerobicfermentate,i.e. cheesewhey,with waterastheextractant.AsyntheticmixtureofconcentratedVFAs andalcohols,andcheesewheyfermentatewereexaminedforVFA separation atdifferenttemperatures(20,30and 40◦C) andpH

(3and5).The VFAsand alcoholsdiffusionthroughthesilicone membranesandtheirflux,masstransfercoefficients,recoveryand separationfactorwereinvestigated.Thisstudyprovidesinsights inVFAseparationfromasyntheticsolutionandcheesewhey,and reportsforthefirst-timethealcoholextractionthroughasilicone membrane,inviewofutilisingthesiliconemembraneseparation processforin-lineVFAandalcoholextractionfromanaerobic fer-mentates.

2. Materialsandmethods 2.1. Sourceoffeedsolution

In viewof understandingthe separation of carboxylic acids andalcoholsinamulticomponentsolution,asyntheticVFA solu-tioncontainingequalamountsofacetic,propionic,butyric,valeric andcaproicacids (5gL−1 each)and alcoholsolutions contain-ingethanol,propanolandbutanol(5gL-1 each)wereprepared

in ROwater (resistivity 13 Mcm−1).Equal concentrations of VFAsandalcoholswerechosentoavoidtheconcentrationrelated changesinfluxandseparationfactor.Cheesewheyfromcowmilk wasobtainedfromthedairyindustry (Dairygold,Mitchelstown, Ireland)andthefermentate,richinVFAs,wasobtainedafter fer-mentationofcheesewheyat35◦CandpH5for7–8days(Dessì etal.,2020).PreliminaryanalysisoftheVFAcontentshowedthe predominanceof butyricand acetic acidwith an average con-centrationof,respectively,4.6and4.0gL−1inthecheesewhey fermentate.

2.2. Experimentalset-up

Asystemconsistingoftwobeakers,asiliconetubemembrane (peroxidecross-linked,withinternaldiameterof3mmand exter-naldiameterof5mm,and2mlength,VWRLtd),aperistalticpump (Masterflex)andasystemofnon-permeabletubes(MasterflexL/S TygonE-LabE-3603)connectingthefeedandthedrawwasusedfor theexperiments(Fig.1).Thefeedbeakercontained400mLof syn-theticVFA/alcoholsolutionorcheesewheyfermentate,whereas thedrawbeakercontained400mLROwater.Theperistalticpump wasoperatedat55mLmin−1.Thedrawsolutionwasstirredat 150rpmbya magneticstirrerwithtemperaturecontrol,inside whichthesiliconemembranewasimmersedforextractiontests. Anactiveinternalmembraneareaof0.0125m2wasincontactwith

theROwaterinthedrawbeaker.Allexperimentswereperformed induplicatesandmembraneswerechangedaftereachexperiment. ThedetailsofindividualexperimentsaresummarisedinTable1. Experimentswereconductedforatleast70hwithsamplestakenat periodicintervalsfrombothbeakersforVFA/alcoholanalysis.The temperatureofthedrawsolutionwasmaintainedat20,30or40◦C usingahotplate.TheexperimentswithsyntheticVFAfermentate wereperformedatpH3and5atthreedifferentextraction temper-atures(20,30and40◦C).ThepHvalueschosenwerebelowand slightlyabovethepKaoftheacids.Beforethestartofeach experi-ment,ifnecessary,thefeedpHwasadjustedusingH2SO4orNaOH.

ThesyntheticalcoholsolutionhadapHof2andwasusedassuchfor theexperiments,sincealcoholdoesnotdissociateatlowpH.For theexperimentsonVFArecoveryfromcheesewheyfermentate, thefirstsamplewascollectedafter10min.(toensurethecheese wheyfermentatewasabletoflowthroughthemembranewithout anyblockage/clogging).

2.3. Analyticalmethods

ThepHandconductivityforthedrawandfeedsolutionwas monitoredusinganaccumet®pHandconductivitymeter(AB200)

(3)

Fig.1. Schematicrepresentationoftheexperimentalset-up.

Table1

Overviewoftheexperimentalconditionsappliedtothesiliconemembranecontactor.

Experiment Feedsolution FeedsolutionpH Temperatureofdrawsolution(◦C)

1 SyntheticVFAsolution 3and5 20,30and40

2 CheeseWheyfermentate 3and5 20,30and40

3 Syntheticalcoholsolution 2 20,30and40

throughoutthecourseoftheexperiment.Thechangeinmassofthe feedwasmonitoredusingaweighingscale(OhausScout®SKX).

VFAconcentrationsweremeasuredusingaVarian450gas chro-matograph(GC)equippedwithaflameionisationdetectorandan SGEBP-21column(30mlong,internaldiameter0.25mmandfilm thickness0.25␮m).Heliumwasusedasacarriergasataflowrate of1mLmin−1.TheGCoventemperaturewasincreasedfrom60◦C to110◦Catarateof30◦Cmin-1andfrom110Cto200Cata

rateof10◦Cmin−1.Theinjectoranddetectortemperatureswere 250◦Cand300◦C(Nzeteuetal.,2018).PriortoGCanalysis,cheese wheyfermentatesampleswerecentrifugedat11,000rpmfor 6 min(Eppendorfnon-IVDCentrifuge5430G)andthesupernatant wasfiltered(0.2␮m)anddilutedappropriately.Thealcohol con-centrationwasmeasuredusingliquidchromatography(LC)(1260 InfinityII,Agilent,USA)equippedwitharefractiveindexdetector (RID)andaHi-PlexHcolumn.ThemobilephasewasH2SO4(5mM)

ataflowrateof0.7mLmin−1. 2.4. Calculations

Theflux(J)orpermeationrateofindividualVFAoralcoholwas calculatedusingEq.1:

J= 1Amt (1)

wheremisthemassofVFAoralcoholpermeatedthroughthe membrane(g),Aisthemembranesurfacearea(m2)andtisthe

timeinterval(h).

Theoverallmasstransfercoefficient,K,wasestimatedusingEqs. 2and3(OutramandZhang,2018):

Ji=AK



Ci,D−Ci,D∗



(2) ln



C i,Dt−C∗i,D Ci,D0−Ci,D∗



= AKt VF (3) whereCi,D0istheinitialconcentrationatt=0,Ci,Dtisthe

concen-trationattime,C*i,Ddenotestheequilibriumconcentration,Vfis

theinitialvolumeoftheVFAsolution,tistime(h)andAisthe sur-facearea(m2).ThevalueswerecalculatedusingthedrawVFAor

alcoholconcentration.

Themembraneseparationfactor(␤VFA)wasestimatedusingEq.

4(Aydinetal.,2018):

ˇVFA/Water=

VFAoralcoholweightfractioninpermeate VFAoralcoholweightfractioninthefeed

Waterweightfractioninthepermeate Waterweightfractioninthefeed

(4)

Thewaterweightfractioninthepermeateandfeediscalculated usingEq.5(Aydinetal.,2018):

Wwater,i= ixVi−(



mVFA,i)

ixVi

(5) where␳iisthedensityofthesolution(gL−1),Viisthevolumeof

thesolution(L)andmVFA,iisthemassofindividualVFA(g).

TherecoverypercentagewascalculatedusingEq.6: Recovery (%)

=



ConcentrationofVFAorAlcoholindrawsolution(tn)

ConcentrationofVFAorAlcoholinfeedsolution(t0)



∗100

(6) wheret0andtnrepresentthestartandtheendtime(h)of

exper-iment.Forfewexperiments,thefeedconcentrationofindividual VFAsatthestart wasobserved tobeless than5gL−1 andthe observedvalueswereusedtocalculatetherecoverypercentage.

ThevapourpressurewascalculatedusingEq.7:

Ps =PS,t ×Xs,t (7)

wherePsisthevapourpressureoftheVFAinsolution,Ps,tisthe

vapourpressureoftheindividualVFAatagiventemperatureand Xs,tisthemolefractionoftheindividualVFAatagiventemperature.

(4)

H.Ravishankaretal. ProcessSafetyandEnvironmentalProtection148(2021)125–136

Fig.2. DrawsolutionVFAconcentrationswithsyntheticVFAmixtureasfeedatpH3a)20◦C,b)30C,c)40C,andpH5d)20C,e)30Candf)40C.(Notethedifferent y-axisscalefordifferentpHconditions).

3. Resultsanddiscussion

3.1. VFArecoveryfromsyntheticVFAsolution

Fig.2showstheconcentrationprofileofVFAsinthedraw solu-tion.Attheendof 70hoperation,thedrawsolutionhad more valericacidascomparedtootherVFAsregardlessofpHand temper-ature.TheVFAconcentrationinthedrawsolutionincreasedwith time, exceptforcaproicacid,which initiallyincreasedand then decreased foralltheconditions(Fig.2).Analysisofthefeedside caproicacidconcentrationshoweditdidnotdiffusebacktothefeed compartment.AtpH3,thecaproicacidconcentrationincreased rapidlyinthedrawsolutioninashorttime(10−30hdepending

onthetemperature)andstartedtodecreaseovertimeafter32,24 and11hat20,30and40◦C,respectively,suggestingthe possibil-ityofevaporativelossorformationofanimmisciblelayerontop ofthedrawsolutionduetothelowsolubilityasopposedtoother VFAsinwater(Khoretal.,2017).ThistrendwasalsonoticedatpH 5foralltemperaturestested,withdecreasingcaproicacid concen-trationsinthedrawsolutionafter46,22and22hat20,30and 40◦C,respectively.Thepresentstudyusedthehighestcaproicacid concentration(5gL−1)inthesyntheticsolutioncomparedtoother modelsolutionsreportedintheliterature(Aydinetal.,2018;Yesil etal.,2014;OutramandZhang,2018;Tugtas,2014).Nonetheless, therapidincreaseincaproicacidconcentrationinashorttime(20

(5)

h)canbeusedforitsselectiveextractionfromaVFAmixtureeven atsuchhighinitialconcentrations.

Feedcomposition,pHandtemperatureaffectedmasstransfer fromthefeedtothedrawsolution,resultingindifferentoverall massfluxvalues(Table2).AtbothpH3and5,thefluxvaluesof thefattyacidsgenerallydecreasedwithincreaseinextraction tem-perature.Thiswasaresultofthehighernetvapourpressureinthe drawside,resultinginaresistancetodiffusionandhencereduction intheflux.AtpH3,thecalculatedvapourpressureofindividual acidsinthedrawsolutionwashighercomparedtothefeedside (TableS1),withanexceptionbeingaceticacid,wherethefluxdid notchange(Table2).Asthemajorityoftheacids(about60%)is dissociatedatpH5(pKa∼4.7–4.8),thevapourpressuredatafor individualacidsinfeedsidewasnotcalculated.However,the indi-vidualvapourpressureoftheacidsinthedrawsolution(wherepH <4)wascalculated(TableS1,FigS1)andcanbeexpectedtobe higherthanthefeedsidewithpH5(BandiniandGostoli,1992). Valericacidshowedthehighestoverallfluxafter70hofoperation (0.70(±0.07)gm−2h−1)atpH3and20◦C,followedbycaproicacid (0.52(±0.06)gm−2h−1).However,atthefirst32hofoperationat pH3and20◦C,caproicacidwasextractedwithamaximumfluxof 1.3(±0.02)gm−2h−1,withanoverallrecoveryof41.5%.

Aydinetal.,(2018)conductedastudywithamicroporousPTFE andPTFE-TOAcompositemembraneforVFAsseparation(atpH3.9 for21,30and38◦C)fromasyntheticVFAsolutionusingNaOHas extractantfora7hperiod.Thestudyreportedthatthemassfluxof individualVFAswasnotsignificantlydifferentat21◦Cand30◦C, butslightlyincreasedat38◦CforseparationusingthePTFE mem-brane.ThemassfluxesobtainedforPTFE-TOAmembraneswere comparablewithtemperature(at21,30and38◦C)withslightly lowerfluxobservedforvalericandcaproicacidwhenthe tempera-turewasincreasedfrom21◦Cto30◦C.Yesiletal.(2014)conducted aVFAseparationstudyusinghydrophobicPTFEmembraneswith syntheticmixedVFAsolutionatpH3and30◦Cwith1NNaOHas drawsolutionfor30h.Propionicacidhadamaximumfluxof14.21 gm−2h−1followedbyaceticacidat13.12gm−2h-1.Caproicacid

hadthelowestfluxof2.13gm−2h−1(Yesiletal.,2014).Thiswas duetothehighaceticandpropionicacidconcentrations(6gL−1) comparedtothatofcaproicacid(1gL-1)inthesyntheticfeedVFA

mixture.

Thefluxvaluesobtainedinthepresentstudyundersimilar oper-atingconditions(pH3andtemperature30◦Cwithwaterasdraw solution) (Table2)wereratherlowcomparedtothosereported withsimilarextractionmethods(Aydinet al.,2018; Yesiletal., 2014).Thiscanbeattributedduetothenon-porouspropertyof thesiliconemembranethatresistsmasstransferasopposedtothe porousPTFEmembranes(Aydinetal.,2018;Yesiletal.,2014)which facilitatesolutetransport.Generally,non-porousmembranesare used toseparatemoleculeswithsizesinsame orderof magni-tude(Mulder,2012).Thefluxoforganicliquidsorvapoursthrough non-porousmembranesdependsonconcentrationgradientswith diffusivitiesincreasingwithconcentration(Mulder,2012).Higher massfluxesof7.34gm−2h-1and5.4gm−2h-1werereportedfor

aceticacidat25◦Cwhenusingrespectively,poroushydrophobic hollowfibremembranes(Qinetal.,2003)andTOAimpregnated hydrophobic membranes,in pervaporationunits (Thongsukmak andSirkar,2007).Thesestudiesreportinghighermassflux(Aydin etal.,2018;Yesiletal.,2014;Qinetal.,2003;Thongsukmakand Sirkar,2007)ofVFAshowever,requireeitherachemicalextractant orahighenergyinvestmentasopposedtothepresentwork.

Sincetheextractionprocessthroughsiliconeisdrivenbya con-centrationgradient,amaximumofhalftheinitialconcentrationin thefeedsolutioncanbetheoreticallyobtainedinthedrawsolution. BasedontheinitialVFAconcentrationinfeedandfinalVFA con-centrationindrawsolution,therecoveryofindividualVFAswas calculatedfortheexperimentalconditions(Fig.3.).Theincreasein

temperatureconsiderablydecreasedtheVFAsmasstransferfrom thesyntheticVFAsolutionandhencereducedtheVFArecoveryat bothpHvaluesinvestigated.AtpH3,therecoverytrendafter70 hwasvaleric>caproic>butyric>propionic>aceticacid. How-ever,caproicacidrecoverycouldbeenhancedwhenextractingat ashorterextractiontimeof32,24and11hat20,30and40◦C, respectively,whereitsconcentrationwashigherascomparedto 70h(Fig.2).Amaximumrecoveryof5,15,29,45and38%was obtainedatpH3and20◦Cforacetic,propionic,butyric,valeric andcaproicacid,respectively.AtpH5,theVFArecoveryfolloweda similartrendasobservedatpH3.Digestateswithhigh concentra-tionofcaproicacid,viz.3.2and4.5gL−1(valuescomparedclosely tothiswork)presentinleachateofafermentedorganicwasteand chickenmanuredigestateshowedlowrecoveriesof8.5and<10% foranexperimentaldurationof15daysand7h,respectively,when usingPTFEandPTFE-TOAmembranecontactors(Aydinetal.,2018; Yesiletal.,2014).Shorterextractiontimescouldhaveledtoabetter caproicacidrecoveryasobservedinthepresentstudy.

TherecoveryofVFAswaslowerthanthetheoretical equilib-riumconcentrationof2.5gL−1,whichcouldpossiblybedueto theadsorptionofVFAsonthesiliconemembraneduetoitshigh hydrophobicity.Asimilarobservationofconcentrationsbelowthe predictedequilibriumconcentrationisreportedforasyntheticVFA solutionandwasattributedtothedistributionofVFAsinthe mem-branes(OutramandZhang,2018).

TheoverallmasstransfercoefficientsofVFAsextractedat dif-ferenttemperaturesandpH(Table3)werecalculatedconsidering themaximumconcentrationobtainedinthedrawsolutionasthe equilibriumconcentration.Theoverallmasstransfercoefficients ofVFAsfollowedtheorderofthecarbonchainlength(caproic> valeric>butyric>propionic>acetic)for bothpHvalues inves-tigated,irrespectiveofthetemperature.Thelongerchainacids, indeed,haveahigheraffinitytothesiliconemembraneduetotheir higherhydrophobicity(Yesilet al.,2014).The coefficientswere loweratpH5ascomparedtopH3(Table3),althoughtheeffect oftemperatureontheoverallmasstransfercoefficientswasnot observed(Table3).

Themasstransfercoefficientvalueswerecomparabletothose reportedbyOutramandZhang (2018).Thestudyreportedthat iso-valericacidhadthehighestmasstransfercoefficient(0.14␮m s−1)followedbybutyric(0.082␮ms−1)andacetic(0.02␮ms−1) acidat25◦C.Yesiletal.(2014)alsoreportedahighermass trans-fercoefficientforcaproicacid(2.07␮ms−1)asopposedtoother fattyacids(acetic,propionic,butyricandvalerichavingmass trans-fercoefficientsof0.56,0.71,0.97and1.21␮ms−1,respectively) usingacross-flowmembranecontactorwithaPTFEmembrane.The masstransfercoefficientsreportedbyAydinetal.(2018)werealso higherinmagnitude,rangingbetween0.61–2.3,1.16–3.3,2.7–7.5, 4.4–16.3and5.8–19.7␮ms−1foracetic,propionic,butyric,valeric andcaproicacid,respectively.Thisisduetotheuseofporous mem-branesalong withNaOHasextractantwhichcreatesa stronger drivingforceforVFAtransfer.Themasstransfercoefficientstrongly dependsonthehydrodynamicsofthesystemandcantherefore bevariedandoptimised.Inthepresentsystem,themovementof VFAsthroughthesiliconemembraneisthroughabsorption, diffu-sion,anddesorptionintotheextractant,whichisaslowprocess (OutramandZhang,2018).Furtherresearchonthemasstransfer resistanceisneededtoelucidatewhichofthesecomponentsis lim-itingthetransfer.However,reducingthethicknessorincreasingthe flowvelocitycouldfurtherimprovethemasstransfercoefficient ofthesiliconemembranecontactorsystemstudied,though nega-tivelyaffectingtheselectivitytowardslongerchainacids(Outram andZhang,2018).

pHandelectricalconductivityweremonitoredforthefeedand drawsolution,whichinthisexperimentwasanindicatoroftheVFA migration.Fig.S1andS2showsthevariationsinpHand

(6)

conduc-H. Ravishankar et al. Process Safety and Environmental Protection 148 (2021) 125–136 Table2

FluxofVFAsacrossasiliconemembranefordifferentfeedcompositionandtemperatures. Flux(gm−2h-1)

VFAs SyntheticVFAsolution Cheesewheyfermentate

pH3 pH5 pH3 pH5 20◦C 30C 40C 20C 30C 40C 20C 30C 40C 20C 30C 40C Aceticacid 0.04±0.00 0.04±0.00 0.03±0.02 0.01±0.00 0.02±0.02 0.01±0.01 0.04±0.02 0.06±0.04 0.09±0.00 0.02±0.00 0.02±0.00 0.03±0.00 Propionicacid 0.16±0.01 0.16±0.02 0.10±0.04 0.05±0.00 0.06±0.05 0.04±0.00 – – – – – – Butyricacid 0.40±0.03 0.38±0.03 0.20±0.08 0.10±0.00 0.09±0.00 0.05±0.00 0.25±0.08 0.28±0.02 0.25±0.02 0.02±0.00 0.07±0.00 0.09±0.00 Valericacid 0.70±0.07 0.47±0.07 0.23±0.10 0.32±0.03 0.20±0.00 0.12±0.16 – – – – – – Caproicacid 0.52±0.06 0.22±0.06 0.09±0.04 0.30±0.06 0.20±0.02 0.10±0.02 – – – – – – Table3

MasstransfercoefficientvaluesofVFAsthroughasiliconemembranewithsyntheticandcheesewheyfermentateasthefeed. Masstransfercoefficient(␮ms−1)

VFAs Syntheticfermentate Cheesewheyfermentate

pH3 pH5 pH3 pH5 20◦C 30◦C 40◦C 20◦C 30◦C 40◦C 20◦C 30◦C 40◦C 20◦C 30◦C 40◦C Aceticacid 0.12±0.02 0.06±0.02 0.10±0.00 0.02±0.00 0.04±0.00 0.06±0.04 0.06±0.04 0.03±0.01 0.09±0.04 0.12±0.09 0.12±0.08 0.14±0.01 Propionicacid 0.15±0.01 0.08±0.03 0.13±0.00 0.05±0.03 0.04±0.01 0.08±0.07 – – – – – – Butyricacid 0.17±0.01 0.13±0.06 0.16±0.00 0.07±0.02 0.06±0.01 0.18±0.06 0.14±0.02 0.13±0.02 0.08±0.01 0.17±0.03 0.07±0.01 0.20±0.04 Valericacid 0.23±0.02 0.33±0.20 0.30±0.07 0.11±0.05 0.16±0.08 0.16±0.07 – – – – – – Caproicacid 0.49±0.17 0.92±0.76 0.73±0.49 0.35±0.23 0.46±0.35 0.55±0.32 – – – – – –

Acidswerenotpresentincheesewheyfermentate.

(7)

Fig.3.VFArecoverythroughthesiliconemembranefromsyntheticfeedata)pH3andb)pH5.ItshouldbenotedthatamaximumVFArecoveryof50%isachievablebecause theextractionisaconcentrationgradientdrivenprocess.

tivityofthefeedanddrawsolutionsatthedifferentexperimental conditionsofVFAandalcoholextraction.Thedrawsolutionshowed asharpdecreaseduringtheinitial2h(forallconditions),indicating arapiddiffusionofVFAoralcoholacrossthesiliconemembrane (Fig.S1).Theconductivityprofilesofthefeedsolutions(Fig.S2) decreased withtime, whilethatofthedrawsolutionincreased, furtherconfirmingtheVFAoralcoholmigration.

3.2. VFArecoveryfromcheesewheyfermentate

Fig.4showstheVFAconcentrationprofilesofdrawsolutions, extractedfromthecheesewheyfermentate.Forallexperimental conditionstested,butyricacidconcentrationsinthedrawsolution increasedfasterthantheaceticacidconcentration(Fig.4).A sub-stantiallyhigherVFAextractionwasachievedatpH3than5,andat bothpHvalues,ahighertemperaturefavouredVFAextraction.This effectoftemperatureonVFAextractionthroughthemembranecan beunderstoodthroughtherelationshipbetweenpenetrationand temperatureestablishedbytheVan’tHoff–Arrheniusrelationship: P= P0exp(−

Ep

RT ) (8)

wherePisthepenetration,Poisapre-exponentialfactor,Risthe

molargasconstant,TisthetemperatureandEpistheapparent

acti-vationenergyofpermeationrequiredforVFAintothemembrane and theopeningbetweenthepolymericchainsofmembraneto allowtheVFAtodiffuse(Hanetal.,2001).

Eq.8showsthatforagivenmembraneandapenetrant(VFA), penetration(P)increaseswithtemperatureresultinginahigher extraction efficiency (Han et al., 2001). Although the tempera-tureshouldimprovetheVFAextraction,forthesyntheticsolution (seesection3.1),thehighernetvapourpressureinthedrawside resulted in lower recovery for longer carbon chain acids with increasedtemperature(TableS1).

Thecheesewheyfermentatecontaineddifferentions(NO2−,

NO3−andSO42-)withpredominanceofCa2+,K+,Na+,PO43-,Cl−

andNH4+of210,2297,694,124,270and462mgL-1,respectively.

Thepresenceofproteinsincheesewheyfermentatewasmeasured tobeintherangeof0.15−0.65gL-1.Thehighconductivityofaround

10mScm-1confirmedthepresenceoftheseionsinthecheesewhey

fermentate,whichfurtherincreasedto16mScm-1atpH3upon

additionwithH2SO4.

Themaximumrecoveryefficiencyforaceticandbutyricacid after70hoperationat40◦Camountedto,respectively,7and21.5

%forpH3,and 3.5and7%forpH5(Fig.5).Thelowerremoval efficiencyobservedcomparedtothesyntheticVFAsolutioncan beattributedto thepresence of thesolidsand ions present in thecheesewheyfermentate(Aydinetal.,2018).Forexample,the presence ofcalcium and phosphate ionsin the fermentatecan resultintheirprecipitationwhentheCa3(PO4)2solubilityproduct

isexceeded,resultinginadeclineofthepermeationfluxand selec-tivityofthemembrane(Chandrapalaetal.,2015).Furthermore,the ionscanresultinconcentrationpolarisation,formingaboundary layerwhichcaninduceinprecipitationofsaltsandthusimpede theVFAtransferacrossthemembrane(Bellman,2012).Thesolids orothersuspended particles, includingproteins, present inthe cheesewheyfermentatemayhaveformedalayeronthesilicone membranes,limitingthetransferofVFAs,eventhoughfoulingwas notvisuallyobserved.Similarrecoveryefficienciesof3.3and7.2% for,respectively,acetic,andbutyricacidhavebeenreportedfrom organicwasteleachateatpH6.6usingacounter-currentflow mem-braneextractionsystemwithNaOHasextractant(Yesiletal.,2014). Incontrast,acetic acidwasrecovered witha greaterthan 45% efficiencyfromthreedifferentorganicwastes(fermentationbroth, landfillleachateandchickenmanuredigestate)(Aydinetal.,2018) usingaTOA-filledPTFEporousmembraneinacontactor.Plácido and Zhang(2018) lookedat VFArecovery fromslaughterhouse bloodanaerobicfermentateusinga poroushydrophobichollow membranesystemwithOctanol/TOAasextractsolution. Unacid-ifiedslaughterhousebroth(wherepHwasunmodified)showed aVFArecoveryof <5%,confirmingthenecessityoflow pHfor VFArecovery(PlácidoandZhang,2018).Uponacidification(exact valuenotreported)oftheslaughterhouseanaerobicfermentate, theoverallVFArecoveryincreasedto80%,withvaleric,butyric, propionicandaceticacidshowing100,94,80and42%recovery, respectively.

Table2showstheVFAsfluxthroughthesiliconemembraneat differentpHandtemperature.Butyricacidhadahigherfluxas com-paredtoaceticacidatallconditionstested.AtpH3,themaximum fluxobtainedforbothbutyricandaceticacidwas0.28(±0.02)g m−2h−1(at30◦C)and0.09(±0.00)gm−2h−1(at40◦C), respec-tively.Yesiletal.(2014)conductedexperimentsforVFAseparation fromorganicwasteleachateusingaPTFEmembranecontactor.The leachatesolutionhadapHof6.6at30◦Candcontainedfattyacids includingacetic(14,277mgL−1),propionic(846mgL-1),butyric

(3926mg L-1),valeric (428mg L−1)andcaproic(3223 mgL−1)

acid.Themaximumfluxwasobtainedforacetic(0.240gm−2h−1), followedbybutyric(0.150gm−2 h−1)andcaproic(0.140gm−2

(8)

H.Ravishankaretal. ProcessSafetyandEnvironmentalProtection148(2021)125–136

Fig.4.DrawsolutionVFAconcentrationswithcheesewheyfermentateasfeedatpH3a)20◦C,b)30C,c)40CandpH5d)20C,e)30Candf)40C(Notethedifferent y-axisscalefordifferentpHconditions).

h−1)acid,suggestinghigherVFAconcentrationsfavouredagreater flux,whichwasfacilitatedbytheconcentrationgradientacrossthe porousPTFEmembranes.Inthepresentstudy,theaveragebutyric acidconcentration(4.6gL−1)wasslightlyhigherthanthatofacetic acid(4.0gL−1),andthelongerchainacidsmigratedfasterthrough thesiliconemembrane.

Themasstransfercoefficientofbutyricacidwascomparatively higherthanaceticacidformostconditionsinvestigated(Table3). Acetic andbutyricacidshowedmaximum masstransfer coeffi-cientsof0.14(±0.01)and0.20(±0.04)␮ms−1atpH5.Overall,the coefficientsobtainedfromcheesewheyfermentatearesimilarto thoseobtainedforthesyntheticfattyacidsolutionforthe major-ityoftheconditionstested,confirmingthenetdrivingforcefor separationisthefreeacidconcentration.Themasstransfer coef-ficientofbutyricacidfromafishfermentationbroth(pH7)using asiliconemembraneextractionsystemwasreportedtobe0.157 ␮ms−1 (OutramandZhang,2018).Yesiletal.(2014)reporteda slightlyhighermasstransfercoefficientof0.022␮ms−1forbutyric

acidextractedfromorganicleachateofaleachbedreactoratpH 6.6usingahydrophobicpolytetrafluoroethylene(PTFE)membrane withNaOHas extractant.Plácido and Zhang(2018) reported a butyricacidmasstransfercoefficientof0.291␮ms−1obtainedfrom slaughterhouseanaerobicfermentateunder acidifiedconditions witha porouspolypropylenemembrane and TOA+1-Octanol as extractant.Table6comparesVFAextractionusingdifferent mem-branecontactorsreportedintheliterature.

3.3. Alcoholrecoveryfromsyntheticalcoholsolution

DependingontheoperationpHorprevailingconditionsinthe fermenter,thecheesewheyfermentationpathwaycanshiftto sol-ventogenesis,producingalcoholsratherthanVFAs(Caleroetal., 2018).Therefore,preliminarytestsofalcoholextractionacrossthe siliconemembranewereperformed.Allthealcoholstestedmoved fromthefeedtothedrawsolutionacrossthesiliconemembrane, withbutanolshowingthemaximumconcentrationattheendof 132

(9)

Fig.5. VFArecoverybythesiliconemembranefromcheesewheyfermentateata)pH3andb)pH5.ItshouldbenotedthatamaximumVFArecoveryof50%isachievable becausetheextractionisaconcentrationgradientdrivenprocess.

operation,followedbypropanolandethanol(Fig.6).Similarly,to theobservationnotedwithVFAs,thiscanbeascribedtothehigher hydrophobicityoflongerchainalcoholsthathavemoreaffinityfor thesiliconemembrane.

Thealcoholrecoveryincreasedwithtemperature(Fig.6),with anexception forbutanolduetothedecreaseinitssolubilityin waterat40◦C(StephensonandStuart,1986).Themaximum recov-eryof42%wasobservedforbutanolat30◦C,whereasthehighest propanolandethanolrecoveriesof32and19%,respectively,were achievedat40◦C(Fig.7).Butanolhadahigherfluxascomparedto propanolandethanol(Table4).Highertemperatureimprovedthe fluxofallalcoholsresultinginamaximumfluxof0.25(±0.01), 0.33 (±0.03) and0.42 (±0.07)gm−2 h-1 forethanol, propanol

andbutanol,respectively,at40◦C.ThongsukmakandSirkar(2007) reportedbutanoland ethanolseparation fromthefeedsolution containing1.5wt%butanol,0.8wt%acetoneand0.5wt%ethanol usingpervaporationwithTOAimmobilisedonhollowfibre mem-branes.Butanolandethanol hadafluxof11 and1.2gm−2h-1,

respectivelyat54◦C.Thelowerfluxvaluesreportedinthepresent workareduetotheinherentnatureoftheprocess(non-pressure driven)wheretheconcentrationgradientisthedrivingforcefor alcoholseparation.However,theuseofanon-poroussilicone mem-branecontactorenablesselectiverecoveryoflongerchainalcohols andischeaperthanpervaporationprocesses.

Theoverallmasstransfercoefficientsofalcoholsfollowedthe orderbutanol>propanol>ethanol foralltemperatures investi-gated(Table4).AsobservedforVFAs,theincreaseintemperature didnotsubstantiallyaffectthealcoholmasstransfercoefficients. Butanolhadthehighestmasstransfercoefficientof0.16(±0.00) ␮ms−1at40◦C,whereaspropanolandethanolhadthehighest coefficientof0.13(±0.00)and0.12(±0.03)␮ms−1,respectively, at20◦C.Lietal.(2011)investigatedin-situbutanolseparationfrom acetone-butanol-ethanolfermentationbrothusingPDMS compos-itemembranesthroughapervaporationprocess.Theoverallmass transfercoefficientsofbutanolduringtheseparationfromabinary (butanol/water),amodelandafermentationculturesolutionwere 0.41,0.35,and0.3␮ms−1,respectively(Lietal.,2011).

3.4. Membraneseparationfactor

Theseparationfactorisdefinedastheabilityofamembraneto separateatargetcompoundandisacrucialparameterwhen select-ingmembranes(Luis,2018).Theseparationfactorcalculatedinthe

Fig.6. Drawsolutionconcentrationofalcoholsextractedusingasiliconemembrane contactorfromasyntheticalcoholmixture(pH2)ata)20◦C,b)30◦Candc)40◦C.

(10)

H.Ravishankaretal. ProcessSafetyandEnvironmentalProtection148(2021)125–136

Table4

FluxandmasstransfercoefficientsofalcoholsacrossasiliconemembraneatpH2fordifferenttemperatures.

Alcohol Flux(gm−2h-1) Masstransfercoefficient(␮ms−1)

20◦C 30C 40C 20C 30C 40C

Ethanol 0.16±0.00 0.18±0.01 0.25±0.01 0.12±0.03 0.08±0.02 0.10±0.01

Propanol 0.24±0.012 0.27±0.02 0.33±0.03 0.13±0.00 0.10±0.00 0.12±0.00

Butanol 0.40±0.034 0.40±0.05 0.42±0.07 0.15±0.00 0.14±0.01 0.16±0.00

Table5

SeparationfactorofVFAsandalcoholsfromsyntheticsolutionsandcheesewheyfermentate. SyntheticVFAsolution

VFA pH3 pH5 20◦C 30C 40C 20C 30C 40C Aceticacid 0.17±0.01 0.25±0.01 0.28±0.01 0.06±0.00 0.13±0.00 0.16±0.00 Propionicacid 0.53±0.02 0.74±0.01 0.83±0.01 0.38±0.00 0.47±0.00 0.62±0.00 Butyricacid 1.06±0.00 1.34±0.00 1.41±0.00 0.70±0.00 0.80±0.00 0.85±0.00 Valericacid 1.63±0.02 1.64±0.02 1.56±0.02 1.55±0.00 1.64±0.00 1.71±0.00 Caproicacid 1.37±0.00 0.94±0.00 0.74±0.01 1.78±0.01 1.87±0.01 1.58±0.00

Cheesewheyfermentate

VFA pH3 pH5

20◦C 30C 40C 20C 30C 40C

Aceticacid 0.39±0.01 0.40±0.01 0.38±0.01 0.77±0.01 0.65±0.01 0.68±-0.01

Butyricacid 1.68±0.01 1.68±0.01 1.68±0.01 1.32±0.02 1.33±0.02 1.28±0.02

SyntheticAlcoholsolution

Alcohol pH2

20◦C 30C 40C

Ethanol 0.61±0.00 0.61±0.00 0.65±0.00

Propanol 0.95±0.00 0.89±0.00 1.13±0.00

Butanol 1.41±0.00 1.66±0.00 1.34±0.00

Fig.7.Alcoholrecoverythroughasiliconemembranefromasyntheticsolutionat pH2.Itshouldbenotedthatamaximumalcoholrecoveryof50%isachievablebecause theextractionisaconcentrationgradientdrivenprocess.

presentworkshowstheselectivityofVFA/alcoholoverwater.The non-poroussiliconemembraneusedinthisstudydoesnotsupport watertransferandtheseparationoffattyacidsdependssolelyon theconcentrationgradientthatactsasthedrivingforce.Valericand caproicacidhadahigherseparationfactorfromthesynthetic solu-tionascomparedtootherfattyacidsatbothpH3and5(Tables5,6). Astheseparationfactorswerecalculatedbasedonthefinal concen-trationsinthedrawsolution,caproicacid,duetoitslowsolubility, showedalowerseparationfactorcomparedtovalericandbutyric acidatpH3and30aswellas40◦C.However,theseparation fac-torforcaproicacidincreasedatpH5,whichisduetothelower separationofacetic,butyricandpropionicacidatpH5asopposed topH3(Table5).Theseparationfactorincreasedforacetic, pro-pionicandbutyricacidwithincreaseintemperatureatbothpH valuesinvestigated.Highseparationfactorvalues(>1)indicatea betterselectivity,suggestingthesuitabilityofthemembrane.For

separationofvolatileorganiccarbons(VOCs),suchasaceticacid, ethyleneglycolanddimethylacetamide(DMAC)fromwater,the separationfactortypicallyrangesfrom1–5forsiliconemembranes (Luis,2018).Anincreaseinseparationfactorbeyond5providesvery littleadditionalbenefitsforVFAseparation(Baker,2012).When cheesewheyfermentatewasusedasthefeed,butyricacidhada higherseparationthanaceticacidatbothpH3and5(Table5).The increaseintemperaturehadanegligibleeffectontheseparation factorofbothacids,indicatingbutyricacidhadabetterselectivity overaceticacidregardlessofthetemperature.

TheeffectoftemperatureontheVFAsseparationfactorusing PTFEandPTFE+TOAmembraneswasinvestigatedusingsynthetic solutions(Aydinetal.,2018).Thecarboxylicacidseparationfactor increasedwiththealkylchainlengthincreasedatalltemperatures assessed(Aydinetal.,2018).Theseparationfactorwashigherfor thePTFE+TOAmembrane at30 ◦C, being0.74,7.05, 171.2for acetic,propionic,butyric,respectivelyand>1250forbothvaleric andcaproicacid(Aydinetal.,2018).Thepresentstudyfounda sim-ilarselectivityorderaswell,showinghigherselectivityforlonger alkylchainlengthsfromboththesyntheticsolutionandcheese wheyfermentate(Table5).Similarly,theseparationfactorof alco-holsinthepresentworkindicatedthatbutanolhadthehighest separationfactorfollowedbypropanolandethanolforall temper-aturesinvestigated(Table5).Thetemperaturedidnotshowany effectonalcoholselectivity(Table5),signifyingthatalongercarbon chainhadabetterextractionselectivityregardlesstheextractant temperature.Typicallyforalcohols,theseparationfactorranges between5–20forsiliconemembranes(Lietal.,2011).

3.5. Practicalimplication

AlthoughtheresultsindicatethefeasibilityofextractingVFAs andalcoholsfromfermentatewithouttherequirementofchemical extractantsandwithlittleenergy(non-pressuredrivenprocess), onlyamaximumrecoveryof50%canbeobtainedwiththepresent technology(whereusingsolelytheconcentrationgradientasthe drivingforceforextraction).Integrationofthepresentsystemfor 134

(11)

Ravishankar et al. Process Safety and Environmental Protection 148 (2021) 125–136 Table6

ComparativestudiesonVFAextractionusingmembranecontactors.

Stocksolution Membrane Operatingconditions Parameter Reference

pH,Timeand Temperature

Extractant VFAconcentration(g L−1) Masstransfer coefficient(␮ms−1) Flux(gm−2h-1) Selectivity /separationfactor Recovery(%) Organicmunicipal leachate

PTFE 6.6,15dand30◦C 1NNaOH AA-14.27,PA-0.84, BA-3.9,VA-0.42,and CA-3.2

AA-0.003, PA-0.004,BA-0.021, VA-0.020,and CA-0.021

AA-0.240, PA-0.008,BA-0.150, VA-0.023,and CA-0.140 AA-0.03,PA-0.02, BA-0.06,VA-0.08, andCA-0.11 AA-3.3,PA-1.8, BA-7.2,VA-10.8, andCA-8.5 21

Syntheticsolution PTFE 3,30hand30◦C 1NNaOH AA-6,PA-6,BA-2, VA-2,andCA-1 AA-0.56,PA-0.71, BA-0.97,VA-1.21, andCA-2.07 AA-13.12, PA-14.21,BA-5.25, VA-5.27,and CA-2.13

AA-0.9,PA-1.10, BA-1.70,VA-2.20, andCA-5.60

Notreported 21

Syntheticsolution PTFE 3,24hand25◦C 0.5NNaOH AA-6,PA-6,BA-5.5, andVA-1,

AA-0.7,PA-0.91, BA-0.947,and VA-1.64 AA-11.65, PA-13.16, BA-12.015.25,and VA-2.99 AA-1.20,PA-1.75, BA-1.79,and VA-4.42

Notreported 23

Leachateof fermented organicwastes

PTFE 3.03,24hand25◦C 0.5NNaOH AA-6,PA-6,BA-2, VA-2,andCA-1 AA-0.64,PA-0.75, BA-1.4,VA-0.64, andCA-0.86 AA-12.93,PA-6.77, BA-12.94, VA-3.57,andCA-2.03 AA-1.23,PA-0.87, BA-0.93,VA-1.61, andCA-1.37 Notreported 23

Syntheticsolution PTFE 2.9,7hand38◦C 0.5NNaOH AA-1.25,PA-1.25, BA-1.25,VA-1.25,and CA-1.25 AA-2.33,PA-3.33, BA-3.88,VA-4.44, andCA-5.83 ∼*AA-8,PA-11, BA-12.5,VA-13, andCA-14.5 ∼*AA-3.1, PA-6.51,BA-6.51, VA-15.05,andCA-21.5

AA-54,PA-64, BA-69,VA-72,and CA-74

20

Syntheticsolution PTFE 2.9,7hand38◦C 0.5NNaOH AA-1.25,PA-1.25, BA-1.25,VA-1.25,and CA-1.25

AA-0.61,PA-2.55, BA-7.5,VA-16.4, andCA-19.7

∼*AA-3,PA-9, BA-17.5,VA-23,and CA-24

∼*AA-0.75,PA-4, BA-60,VA-1300, andCA-1350

AA-34,PA-85, BA-98,VA-99,and CA-99

20

Landfillleachate PTFE-TOA 4,7hand38◦C 0.5NNaOH AA-4.3,PA-0.48, BA-7.1,VA-0.14,and CA-0.756

Notreported Notreported Notreported AA->45,PA->86, BA->86,VA->86, andCA->86

20

Chickenmanure digestate

PTFE-TOA 4,7hand38◦C 0.5NNaOH AA-2.66,PA-1.98, VA-0.189,andCA-4.53

Notreported Notreported Notreported *AA->45,PA-78, VA-30,andCA-8

20 Fermentationbroth PTFE-TOA 4,7hand38◦C 0.5NNaOH AA-4.2,PA-1.0,

BA-7.8,VA-0.13,and CA-0.89

Notreported Notreported Notreported AA->45,PA->95, BA->95,VA->95, andCA->95

20

Slaughterhouse blood

Polypropylene Acidified,and6h TOA+1 -Octanol

Notreported AA-0.058, PA-0.170,BA-0.291, VA-0.00,and CA-0.145

Notreported Notreported AA-42,PA-80, BA-94,andVA-100

34

Slaughterhouse blood

Polypropylene Un-acidified,and2 h

TOA+1 -Octanol

Notreported AA-0.099, PA-0.121,BA-0.091, VA-0.027,and CA-0.091

Notreported Notreported TotalVFArecovery <5

34

Fishfermentate Siliconemembrane 3,200hand25◦C Water **AA-11.4,PA-3.5, BA-12.8,VA-0.4,and CA-0.3

AA-0.0,PA-0.114, BA-0.157, VA-0.209,and CA-0.144

Notreported Notreported Notreported 22

Fishfermentate Siliconemembrane 6.6,200hand25◦C Water **AA-11.8,PA-3.6, BA-14,VA-0.5,andCA-0.5

AA-0.00,PA-0.00, BA-0.00,VA-0.00, andCA-0.00

Notreported Notreported Notreported 22

Syntheticsolution Siliconemembrane 2.5,200hand25◦C Water AA-6,PA-6,BA-2, VA-2,andCA-1

AA-0.0017, PA-0.0075,BA-0.016, VA-0.053,and CA-0.199

Notreported Notreported Notreported 22

Syntheticsolution Siliconemembrane 3&5,70h,20,30& 40◦C

Water AA-5,PA-5,BA-5, VA-5,andCA-5

ReferTable3 ReferTable2 ReferTable5 ReferFig.3 Thisstudy

Cheesewhey

fermentate

Siliconemembrane 3&5,70h,20,30& 40◦C

Water AA-4,andBA-4.6 ReferTable3 ReferTable2 ReferTable5 ReferFig.5 Thisstudy

Note:d-days;h-hours;AA-Aceticacid,PA-Propionicacid,BA-Butyricacid,VA-ValericacidandCA-Caproicacid;*Approximatevaluesobtainedfrombargraphsorratiosinthemanuscript;**Averagedfromtwofishfermentates usedinthestudy.

(12)

H.Ravishankaretal. ProcessSafetyandEnvironmentalProtection148(2021)125–136 concurrenthydrogenproductionthroughfermentationandbutyric

acidextractionfromfermentatedemonstratedgoodseparationof butyricacidwithhighpurity(over90%oncarboncontentbasis) withoutaffectingthehydrogenproductionrates(Dessìetal.,2020). However,inviewofachievingasustainableextractionprocess, fur-therresearchisstillrequiredtoadvancethetechnologyreadiness levelofthesiliconemembranecontactor.Couplingthecontactor withamembranedistillationunitcanseparatetheindividualVFAs fromthemixtureatdifferenttemperatureswiththepotentialto obtainpureVFAs while maintainingtheconcentrationgradient forextraction(Aktijetal.,2020).Theselectivityofmembranefor VFAs/alcoholscanalsobeimprovedthroughmembrane modifi-cation (fillingextractantsin themembrane pores)(Aydinetal., 2018),therebyimprovingtheoverallrecoveryefficiencyfromthe fermentate.

4. Conclusion

VFAsand alcoholrecoveryfromconcentratedsynthetic solu-tionsandcheesewheyfermentatethroughasiliconemembrane contactorusingwaterastheextractantwasdemonstrated.A max-imum of 45 %and 41.5 %recoveryof valeric and caproicacid, respectively,aswellas42%recoveryofbutanol,wasachievedfrom syntheticsolutions.Maximumrecoveryofcaproicacidoccurred within 20 hof experimentaloperation. Acetic and butyricacid extractionfromcheesewheyfermentate(pH3;40◦C)wasachieved with7%and21.5%recoveryefficiency,respectively,showcasing thefeasibilityofthesiliconemembranecontactorforconcentration drivenVFAseparationfromcheesewheyfermentate.The separa-tionfactorvaluesindicatelongercarbonchainVFAs/alcoholshad betterselectivitythroughsiliconemembrane.Furtherresearchon membrane modificationordownstreamprocessingcouplingthe membranecontactorwithbetterselectivityofVFAs/alcoholscan improvetheoverallrecoveryefficienciesandevolveintoamature technologyforin-lineseparation ofVFAs/alcoholsfromreal fer-mentate.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

TheauthorsthankScienceFoundationIreland(SFI)for support-ing theresearchworkthrough theirSFIResearchProfessorship ProgrammeentitledIETSBIO3 (InnovativeEnergyTechnologiesfor

Biofuels,BioenergyandaSustainableIrishBioeconomy)[grant num-ber:15/RP/2763]andtheResearchInfrastructuregrantPlatformfor BiofuelAnalysis[grantnumber16/RI/3401].

AppendixA. Supplementarydata

Supplementarymaterialrelatedtothisarticlecanbefound,in theonlineversion,atdoi:https://doi.org/10.1016/j.psep.2020.09. 052.

References

Aktij,S.A.,Zirehpour,A.,Mollahosseini,A.,Taherzadeh,M.J.,Tiraferri,A.,Rahimpour, A.,2020.J.Ind.Eng.Chem.81,24–40.

Alkaya,E.,Kaptan,S.,Ozkan,L.,Uludag-Demirer,S.,Demirer,G.N.,2009. Chemo-sphere77,1137–1142.

Atasoy,M.,Owusu-Agyeman,I.,Plaza,E.,Cetecioglu,Z.,2018.Bioresour.Technol. 268,773–786.

Aydin,S.,Yesil,H.,Tugtas,A.E.,2018.Bioresour.Technol.250,548–555. Baker,R.W.,2012.MembraneTechnologyandApplications.JohnWiley&Sons. Bandini,S.,Gostoli,C.,1992.J.Membrane.Sci.70,119–127.

Bellman,K.L.,2012.TheOhioStateUniversity.

Bertin,L.,Martinez,G.,Domingos,J.M.B.,Rebecchi,S.,Fava,F.,2016.NewBioeth., S18.

Cabrera-Rodríguez,C.I.,Moreno-González,M.,deWeerd,F.A.,Viswanathan,V.,van derWielen,L.A.,Straathof,A.J.,2017.Bioresour.Technol.237,186–192. Calero,R.R.,Lagoa-Costa,B.,Fernandez-Feal,M.Md.C.,Kennes,C.,Veiga,M.C.,2018.

J.Chem.Technol.Biotechnol.93,1742–1747.

Chandrapala,J.,Duke,M.C.,Gray,S.R.,Zisu,B.,Weeks,M.,Palmer,M.,Vasiljevic,T., 2015.J.DairySci.98,4352–4363.

Dessì,P.,Asunis,F.,Ravishankar,H.,Cocco,F.G.,DeGioannis,G.,Muntoni,A.,Lens, P.N.,2020.Int.J.Hydrog.

Han,S.,Ferreira,F.C.,Livingston,A.,2001.J.Membrane.Sci.188,219–233. Jones,R.J.,Massanet-Nicolau,J.,Guwy,A.,Premier,G.C.,Dinsdale,R.M.,Reilly,M.,

2015.Bioresour.Technol.189,279–284.

Khor,W.C.,Andersen,S.,Vervaeren,H.,Rabaey,K.,2017.Biotechnol.Biofuels10, 180.

Li,Z.,Qin,W.,Dai,Y.,Chem,J.,2002.Eng.Data.47,843–848. Li,S.Y.,Srivastava,R.,Parnas,R.S.,2011.Biotechnol.Prog.27,111–120.

Luis,P.,2018.FundamentalModelingofMembraneSystems:MembraneandProcess Performance.Elsevier.

Maina,S.,Kachrimanidou,V.,Koutinas,A.,2017.Curr.Opin.GreenSustain.Chem.8, 18–23.

Mulder,M.,2012.BasicPrinciplesofMembraneTechnology.SpringerScience& BusinessMedia.

Nzeteu,C.O.,Trego,A.C.,Abram,F.,O’Flaherty,V.,2018.Biotechnol.Biofuels11,108. Outram,V.,Zhang,Y.,2018.Bioresour.Technol.270,400–408.

Plácido,J.,Zhang,Y.,2018.Waste.Biomass.Valori.9,1767–1777. Playne,M.,Smith,B.,1983.Biotechnol.Bioeng.25,1251–1265. Qin,Y.,Sheth,J.,Sirkar,K.,2003.Ind.Eng.Chem.Res.42,582–595.

Rebecchi,S.,Pinelli,D.,Bertin,L.,Zama,F.,Fava,F.,Frascari,D.,2016.Chem.Eng.J. 306,629–639.

Reyhanitash,E.,Zaalberg,B.,Kersten,S.R.,Schuur,B.,2016.Sep.Purif.Technol.161, 61–68.

Reyhanitash,E.,Kersten,S.R.,Schuur,B.,2017.ACSSustain.Chem.Eng.5,9176–9184. Scarlat,N.,Dallemand,J.-F.,Monforti-Ferrario,F.,Nita,V.,2015.Environ.Dev.15,

3–34.

Stephenson,R.,Stuart,J.,1986.J.Chem.Eng.Data31,56–70. Thongsukmak,A.,Sirkar,K.,2007.J.Membrane.Sci.302,45–58.

Trad,Z.,Akimbomi,J.,Vial,C.,Larroche,C.,Taherzadeh,M.J.,Fontaine,J.-P.,2015. Bioresour.Technol.196,290–300.

Tugtas,A.E.,2014.WasteManage.34,1171–1178.

Xiong,B.,Richard,T.L.,Kumar,M.,2015.J.Membrane.Sci.489,275–283. Yesil,H.,Tugtas,A.,Bayrakdar,A.,Calli,B.,2014.WaterSci.Technol.69,2132–2138. Yuan,Y.,Hu,X.,Chen,H.,Zhou,Y.,Zhou,Y.,Wang,D.,2019.Sci.TotalEnviron.,

133741.

Zacharof,M.-P.,Lovitt,R.,2014.WaterSci.Technol.69,495–503. Zhang,Y.,Angelidaki,I.,2015.WaterRes.81,188–195. Zhou,F.,Wang,C.,Wei,J.,2013.J.Membrane.Sci.429,243–251.

Riferimenti

Documenti correlati

En bas, un champ épigraphique rectangu- laire est réservé dans un cadre plat (19/35) ; il abrite une inscription sur quatre lignes.. Lieu de conservation : Réserves. Style écriture :

L’individuazione delle varianti genetiche associate con il rischio di sviluppare tali tumori permetterebbe l’identificazione, nella popolazione generale, degli individui ad

Forearm resistances were significantly lower at rest in healthy (0,64±0,02 vs 1,03±0,06 mmHg/ml/min p&lt;0,05 – figure 2), they were reduced by HG in both groups (p&lt;0,05), while

When interacting with an object, a user can share information with it and is also introduced to the social network of its friends; the user can explore this network to discover

The method used longer coherence times in regions of parameter space where (1) the detectable signal level given the frequency-dependent instru- mental noise was closer to the

Si intende infatti evidenziare gli effetti che certe scelte possono avere sui costi delle attività aziendali collegate, come ad esempio gli effetti che la

Negli anni ’70 sono stati introdotti nuovi farmaci, definiti di seconda generazione e rinominati “antipsicotici atipici”, che hanno dimostrato di essere molto efficaci

For routine controls, the analysis of the aroma through a total analysis system (TAS) can be useful to describe these attributes in defining the sensory properties of