28 July 2021
AperTO - Archivio Istituzionale Open Access dell'Università di Torino
Motogenic growth factors: HGF/SF and MSP / M. SANTORO. - In: MINERVA. - ISSN 0026-4695. - 9(1997), pp. 85-92.
Original Citation:
Motogenic growth factors: HGF/SF and MSP
Publisher:
Terms of use:
Open Access
(Article begins on next page)
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
Availability:
Minerva Quarterly Review Limited:19 Nottingham Road, London SW17 7EA United Kingdom:011 44 208 This is the author's manuscript
REVIEW
MINERVA BIOTEC 1 997;9;85-92
Motogenic
growth
factors:
HGF/SF
and
MSP
MASSIMO M. SANTORO. GIOVANNI GAUDINO
Cell movement is a critical step in norrnal ernbryonic
development,
tumour
metastasis,inflammatory
responses, and wound healing. Cell migration has been described as continuous cycles
of
specific and subsequent morphological changes of the cell body, dueto
cytoskeletal modifications and forrnationof
adhesive contacts. There is increasing evidence that growth îactor receptors can modulate cell motility, interfering either
with
the assembVdisassemblyof
the focal adhesion sites and
with
the mechanismof
polymerisation,/depolymerisation
of the
actin fila-ments. One particular subfamilyof
growth factors has treen characterised by its abilityto
inducedeve-lopmental, as
well
as growth, cell dissociation, andmotility
stimuli:
Hepatocyte Growth Factor/Scatter Factor (HGF/SF) and Macrophage Stirnulating Protein(MSP). HGF/SF protein has the property of dispersing
or
scattering epithelial cell colonies into single isola-ted cells, with enhanced random, non-polarised moti-lity. The biological activity of the recepto! Met tyrosi-ne kinase, dependson the
presenceof two
pho-sphotyrosine residuesin
the carboxy-terminal tail, acting as a multifrrnctional docking sitefor
SH2-con-taining
effectors. Macrophage Stimulating Protein(MSP),
originally
discoveredby
its
effect on
rna-crophages, is also active on several epithelial cells. Its receptor, the Ron tyrosine kinase, can be constituti-vely activatedin
the absence of the ligand.In
these conditions the signalling evokedby
active tyrosine kinase induces a strong motile and invasive phenoty-pe. The îact that HGF/SF and MSP elicit motile-invasi-ve respoflses indicates the important role played byThis work has been supportecl by AIRC (Associazione ltaliana per ia Ricerca sr.rl Cancro) and by CNR Prolect 95.00367.1,F39.
Address reprint requests tor G. Gaudino, Department of Science
ancl Aclvanced Technologlies, University of 'forino at Aìessandria,
Corso Borsalino i4, 15100 Alcssandria, ltaly.
From the Dqpartment of Science and Aduancecl Technologies
Uníuersity cl Torino at Alessandria, Ital1
these factors and
their
receptorsin
cell physiology and pathology.KEv wonos: Cell movement
-
Growth substances-
Sisnaltransduction HGF/SF
-
Macrophage stimulating proiein (MSP) Hepatocyte growth facror (HGF/SF).f
eÌ1migration plays
a crucial role
in
a
wide\--r spsclpm of
lriological eventsnot
onlyfor
sim-ple organisms but also
for
animals. The aptitude of severalcells
to
migrate
is an
important
process during embryogenesis, ranging from gastrulation to developmentof the
nelvous
system. Moreoverit
lasts also
during
the
adult
1ife, remaining promi-nent during physiological processes (e.g. inflamma-tory response, wound healing, and tissueregenera-tion)
aswell
asin
disease,during the
metastatic process.l Not every ce1l type is specialised for loco-motion,but in
given circumstances someof
them (e.g. neutrophils, fibroblasts, neurons) are able tomove.
In
many
tissuescell motility is
normally
repressed
but
it
is activated onlyby
certain physio-logical and pathophysio-logical conditions (e.g. oncogenic transformation, inflammatory process, tissue rege-neration).Cell locomotion
hasbeen
described asconti-nuous cycies of specific and subsequent
morpholo-gical
changes
of
the cell
body.z These
ma1ormorphological changes can
be
summarised asSANTO]ìO
lows:
(i)
cytoskeletal-mediatecl extensions(prc.ttru-sion), (.i1) fbrmation
of
adhesive contacts at the cellleading edge (.aclhesicti), (11i) movement along the
substrate (trctctictn),
(iv)
breaking adhesive contacts ( cle acl h e s ion'), (.v') q-t()skeletrl-dè penclent retractionof
the trailing
eclge(tail
retrctctiori). Every stepof
these cycles neecls
a
complex arrayof
molecular events,that
requiresthe
physically
co-ordinated involvement, both spatially and temporally, of cyto-skeletal network, plasma-membrane compartment, and adhesion system.Cell migration has been described as the
fctrma-tion
of
intimate and
extensive adhesive contacts between cells and substratum. This resultsfrom
aco-operation between the adhesive system and the actin cytoskeleton,
followed
by
generationof
for-ces acrossthe
cell.:
Therefore.it's
of
paramount importanceto
investigatethe
mechanismscontrol-ling:
(i)
the
statusof
adhesive contacts nirh
thematrix
or with the
sr:bstrate, deterrnineclby
theassembly/disassembly
of
the focal
adhesion sites;(ii)
the
cytoskeletal reorganisation insidethe
cell. visible as stress fibers and lamellipodia formation. basedon
polymerisation/de-polymerisationof
the actin filaments.Focal adhesion
is the
common tvDeof
adhesive contact madeby
cellswith
theExtiicellular
Matrix (nClf).+ Focal adhesions are characteriseclby
inte-grins
asthe major
adhesion receptors s eand
byassociated cytoplasmic plaque proteins, including
vinculin, talin, paxillin
and
a
number
of
proteintyrosine
kinases,such as
FAK(Focal
AdhesionKinase).4 r They are the major sites of actin fìlament attachment at the contact interface. their formation is associatecl
with
the processof
cell spreading and are sitesfor
co-ordination betweencell
adhesion and cell migration.sThe assembly
of
the fbcal adhesions is regulated by ECM ligancl binding events. The combinationof
integrin
receptor occupancyand
clustering,indu-ced
by
the
ECMligands triggers
a
synergistic response that includes re-orÉlanisationof
the
cyto-skeleton, associationof
cytoplasmicplaque
pro-teins, and activzttion of a local signalling pathway.6'rOn the
other hand, adhesive complexes assemblyand disassembly can also be regulated
hy
intracel-lular
signal5,10 11 These signals areÉaenerated by biochemical modifications and oroduction
of
soh,r-ble
second messengerstypical
of
the
signal tran-sduction pathways.N{()TOGllNtC GRONTII lìAC-lOlìS: HGF/ SF AND ì\,lSP
It
has been postr-rlated that one of the mechanismsof
adhesive complexes formationis
tyrosine pho-sphorylation ctf integrins,paxillin,
tensin, and FAK by specific tyrosine kinases. The phosphorylation on tyrosine residues generates ctnthe focal
aclhesion components, specific recognition sitesfor
proteins containing SH2 (Src-homology2)
clomains 12 fi
In adclition, FAK exhibits tyrosine kinase activity anclphosphorylates cytoskeletal-associated substrates such as
talin,
Src ancl paxilli1.15 16This might
benecessary
fbr
recruiting
aclclitìonal structural and signalling componentsof
the
focal adhesioncc-rm-plex. FurthermoÍe,
the
focal adhesion prcteins can aiso bind to each other and to actin filaments.throu-gh
SH3 (Src Homology-3)-binding domainsor
byLIM
domains.t; The
mctlecular interconnectionsbetween the components of the focal adhe.sion
com-plex
and
cytoskeletal actin canbe
enhanced and modified by these multiple biochemical interactions,in
orderto
transmit mechanical forcesfor
cell loco-motlon.Focal adhesions and actin-membrane interactions
are also regulated
by the
Rhosubfamily
of
thcGTP-binding proteins.tE Cdc 42, Rac, and Rho sti-mulate the assembly
of
structuÍes resembling focal adhesionsin
association witl-ifilopodia,
lamellipct-dia,
and
actin
stressfibers,
respectively.le Inte-restingly, Rho can regulate actin polymerisation 20through a pathway involving the increase
in
phcts-phatidylinositol 4,5
bisphosphate(PIP,)
levels.2tPIP, promotes actin
filament
polymerisation
bydirect
interactionwith
actin-binding proteins.22 Inaddition, Rho and other related GTPases may also
function
in
a local
signaliing pathway,
couplingligand
binding
of
integrins
to
focal
aclhesion assembly.'r Giventhe
roles playedby
Cdc42, Racand
Rhoin
the
regulationof the
different
actin-membrane interactions. these transclucers cor-rld be sr,rfficientto
clrivethe
entire process co-ordinating the cyclesof
cell extension, adhesion, and detach-ment that are implicatedrn
cell n-rotility. Howcver, the mechanisms exertedby
Cdc42, Rac ancl Rho inthe
processes relevantto
cell
locomotion are notwell
characterised yet. Many protein tyrosine kina-sesand tyrosine
phosphatases aswell
aslipid
enzymes,
including the focal
adhesion
kinase(FAK), phosphatídylinositol
(PI)
3-kinase(PI
3-kinase),
phosphatidylinositol
phosphate(PIP)
5-kinase
(PIP
5-kinase),and
the
phospholipaseC-(PLC-y) have been iclentified as
key
mediatorsof
NIOTOCIENIC CìRO\\IH FACTORS: HCìI-'/SF AND NiSP
the
signalling pathway inducedby
these small G proteins.l FAK probably initiates formation ofacll-re-sions, PIP-5 kinase generates PIP, implicated
in
the assemblyof
actin filaments, PI 3-kinase is involvedin
chemotactic responses anclin
the modulationof
integrin
affinitv,
PLC-y mobilise actin-binding pro-teins uia h).drolysis 9f PIP,.rTlre
multitucleof
intracellularcomolex
interac-tions, leading
to
cell motility arc
dcpènclent upon several stimuli evokedby
the extracelh,rlar enl iron-ment, as grou'th and clifferentiation f:rctors,cltoki-nes,
and
chemoattractants.In
particular,the
rapid effects on cell adhesion ancl on celi motility, erertedby
somegrowth
factors and
their
receptors are mediatedby
someof
the transducers and effectors mentioned above.In
additkrn, growth factor recep-tors trigger signalling pathn'ays very similarto
the Iocal signals of focal aclhesion regulation. Forexam-ple,
Cdc42, Racand
Rhoare
activatedby
rnany growth factors,23 2a anclPI
netabolisn
is
linkecl tcrthe growth factor receptor-mecliated ceil rnotility.:;
:-In
this review, attentionwill
be focusecl on the spe-cific gror,vth factors inclucing cell migration.Motogenic
growth
factors
In
general, tissue growtl-ì factors are soluble pro-teins acting on the gror,vth and on the proliferationof
specific target cells. Nevertheless, mzrny gror,vth factorswork
as nultifr-Lnctional agents. thzLt inducenot only cell
proliferation,
but
alsoa
variety of
additional effects including cell movement.
Gror.r'th factors exefi their effect through binding
to
the ceil surface, wherea
specific transmembrane receptor rvith protein tyrosine kinase activity (PTK-R) is located. Bindingof
the gr()wth factor to the extra-celluiar domainof
these receDtors leadsto
the tran-sient activationof
the kinase anclof
rhe sienzrl tran-sduction cascade reactions.2il 31 Ligand binclingintlu-ces dimerization
of
receptor molecules,which
inturn
leadsto
an
increasein
catalytic activity. Thisal1ows auto-transphosphorylation
of
the intracellular domain of the receptor on tyrosine residuesembecl-ded
in
specific amino acid sequences. These pho-sphotyrosines and their flanking sequences becomeclocking
sitesfor
proteins containing
conservedstructural modules.
known
as SH2 domains. This moduleis a
typical featureof
sequences encocling molecules involved in signal transcluction.szSANTORO
As
nentioned
above, tl-rereis
increasingeviden-ce
thatgrowth
factor receptors can modulate cel1motility.
interfering eitherwith
the assembly/disas,sembly
of
the
focal
adhesion sitesand
with
the mechanismof
polymerisation/clepolyrnerisationof
the actin filaments.
It
isu'orth
nothing that signals elicitedby
growth factor receptors can activate the samespecific intracellular signalling
pathweys inducedby
integrins and,/or other componentsof
the focel
adhesion..r3 For example, PDGF, insulin,and IGF-1 are able
to
índuce re-orp;anisationof
ti-reactin cytoskeleton, as during formation
of
lamelli-podia and menbrane
ruffles,following
activationof PI
3-kin25s.31-36 Many data have shedlight
onthe mechanisms
by which
PI 3-kinase and its lipicl prodllcts can initiate cell movement. Some eviden-ce suggest that thelipid
products of the PI 3-kinasemay
be
involvecl
in
mecliating interactionswith
actin filanents
and,/ormicrotubular
motor5.37 38 Recentlv,it
h:rs been clemonstratecl that oneof
the don'nstrearn effectorsof PI
3-kinaseis the
smallGTP-bincling
protein
Rac,that can be
directly
responsible
for
the
PDGF-incluced chemotacticresponse by fibroblasts
in
uitro.3e 10There
are
several examplesof
invoivement of
gros'tll
factorsin
the
regulationof
fbcal adhesion and actinfilanents
assembly.It
has beenclemon-strated
that the platelet-derived growth
factor
receptor (PDGF-R),
upon
ligand activationis
able to interferewith
adhesion and cytoskeletal systems. Phosphorylated PDGF-Rinduced
cytoskeletal re-organisationin
the
skeletal muscle cell, aswell
asthe
tyrosine phosphorylationof
paxillin,
FAK, and talinin
Sn-iss 3T3 fibroblasts.+l 12ln
adherent Swiss3T3 cells
the
activated PDGF-R inducedthe
asso-ciation
of
PI 3-kinasen'ith
làK.2.) PDGF bindins toits
receptor indnced tyrosine phosphorylarionòf
a190 kDa protein that co-immunoprecipiteted
specr-fically urith integrin
o..B,.13Furthermore,
PDGF induces neurite outgrowthof
PC12 ce11sin
aPI
3-kinase and PLC-y dependent manner.4l
Another
growth
factor,
the
Epidermal
GrctwthFactor (EGF) is directly involved
in
the cyoskeletal organisation of the cell, because its receptor (EGF-R) contains an F-actin binding domainin
its intracellu-lar region.asUpon
activation
of
their
respective receptors, both PDGF and EGF incluce the formationof
focal adhesion throurshthe
stimulationof
the
GTP-bin-ding proteinsoi
the Ras family.In
addition, PDGFSANTOIìO
and EGF receptors phosphorylated PLC-y1,16
a
pre-requisitefor
the
dissociationof
the
profilin:PlP, '+;and
gelsolin:PIP, complexes,4s important steps inthe
regulationof
actin polymerisation/depolymeri-sation. Moreover, stimulationwith
insulin has been foundto
induce the direct association between the phosphorylated specific Insulin Receptor Substrate-1(IRS-1)
and
the
integrin
cr,.Br. Similarly,the
o"B, ligand enhanced severalfold
DNA synthesis indu-cedby
insulin,in
ce1ls plated on vitronectin.is Thisresult
revealsthe
existenceof
a
direct
cross-talkbetween these
two
classesof
molecules: Integrins and Tyrosine Kinase Receptors.On the
other hand, there are synergistic effectsamong
Growth
Factors anC integrinsinvolved
inthe
regulationof
cell
rnigration andcell
adhesion. The misrationof
FG carcinoma cells on vitronectinmatricei
needsthe
activation
of the
signal
tran-sduction pathway
by
EGF-R,including
PKC andPlC-activation.25 50
In
addition,
StemCell
Factor(SCF) enhanced mast ce1ls adhesion
to
fibronectin,uia PI
J-kinase
aclivation upon hinding
tt-rit:
receptor Kit.;t This synergism is strictiy reqttiredior
a complete biological effect conveyetl
hy
a growthfactor. The
addition
of
PDGFto
non-adherentfibroblasts,
doesnot
induce 1,5
PIPz hydrolysis(althor-rgh PLC-y becomes activated), neither Car+ mobilisation and PKC activation, three
well
known events exerted by PDGF and involvedin
its prolife-rative response.The failure
of
PLC-yto
hydrolyse PIP, stemsfrom the lack
of
substrate (.4,5PIP),
whose synthesis depends
on
PIP 5-kinase activity,induced
hy
integrin binding
to
ECM.The full
responsiveness
of
fibrobiaststo
growth
factorsti-mulation
can
be
rescued,only after plating
on fibronectin.izr;
Adherenceto
the
ECM. and subse-quent integrin activation stimulated the small GTP-binding protein Rho, resultingin
an increase of PIP5-kinase actlvity and synthesis
of
4,5-PIPr, substrateof PLC-Y.54
According
to
this model,
mitogenicstimuli
areunder
the
double
control
of
growth
factors andextracellular matrices:
cell
oroiiferationis
inducedby
the growth
factor,through the
activationof
aspecific enzyme (PLC-y),
but
is modulatedby
inte-grins, that influencethe
cellular responsiveness to growth stimuli, regulating the levelof
the substrate (PIPr) for the effector enzyme.One
particular subfamilyof
growth
factors has been characterisedby
its ability
to
inducea
wideNIOTOGENIC GRO\VTII FACTORS: HGF/SF AND N{SP
spectrum
of
biological activities. Among thesc aredifferentiative) as
well
as growth, cell dissociation,and
motility
stimuli,all
conveyedby two
heterodi-meric proteins,
known
as Hepatocyte Growth
Factor,/Scatter Factor (HGF/SF)
and
Macrophage Stimulating Prorein (MSP).Hepatoclte
Growth
Factor/ScatterFactor
(HGF/SF)
This protein
hasthe
property
of
dispersing orscattering epithelial
cell
coloniesinto
singleisola-ted
celis,by
ruptureof
intercellular junctions and desmosomes.The
scattered cells have enhancedmotilit)-,
shc,u-ingrandom,
non
polarised
move-ment.:: The determination
of
its
amino
acid
seqlÌence showed
that
it
is
identicai
to
a
strong mitogenfor
hepatocytes andfor
awitle
varietyof
other
epithelial
ce11 types.r6 Hepatocyte GrowthFactor/Scatter Factor (HGF/SF), as
it
is now named, has been generally found to be secretedby
mesen-chymal ce1ls (fìbroblasts and smooth mr-rscle cells)rather
than
by
epithelial and endothelial
cells,although its effects are mainly obvious on the latter
two
cell types.HGF/SF is a heterodimer
with
a larger cr chainof
about 60
fOa
anda
smaller$
chainof
about 30KDa, linked by a single interchain disulphide bond. The protein
is
glycosylatedto
a
significant extent.It
is translated from a single nRNA, and the activeform is
producedby
cieavageof
the
biologicallyinert
precursor chain. Anaiysisof the
structureof
the molecule revealed several features that are not shared
with
any other Élrowth factor. The cr chain conlainsfour
kringles,
structuralmotifs that
also occursin
plasminogen, tissue-type andurokinase-type
plasminogen activators, factorXII
andproth-rombin.
The
B chain consistsof a
serine protease domain thatis
inactive, becauseof
substitutionof
two
criticai residues in the catalytic site.5rThe high affinity
receptorof
HGF/SF has beenidentified as the MET proto-oncogene product. Met is a transmembrane receptor tyrosine kinase, made
of a
745KDa
B subunit anda
50 KDa cr subunit, that is synthesised as a single chain precursor. The c, chain and the N-terminalportion
of
the
B chainare exposed on the cell surface, whereas the C-ter-minal portion
of
the B chain is locatedin
thecyto-plasm and contains the tyrosine kinase domain and
N{OTOGE\IC GIìO'$íTH FACTORS: HGF,,SF AND NISP
phosphorylation sites involved
in
the regulationof
enzyme activity and signal 112n5ds611en.58 5e
The biological activity
of
the
receptor, including cell motility, depends on the presenceof two
pho-sphotyrosine residuesin
the
carboxy-terminal tail, which act as a multifunctional dockins site for SH2-containing effectorsand activlte
,n
ìrrry
of
tran-sductional pathways.6trThe molecular
mechanisms
resoonsible
for
HGF/SF
and Met receptor mediateJ
cytoskeletal rearrangementand
consequentcell
migration arenot
fully
understood. The role playedby
thePI
3-kinase
in
HGF/SF-mediatedmotility
and scattering seemswell
defined. The HGF/SF induced scatterinson
MDCK cells can be blockecl usingthc
selectivèPI
3-kinase
inhibitor, \fortmannin.6l
Similarly,\Tortmannin treatment abrosates HGF-induced che-motaxis and tr-rbulogenesis
in
renal epithelial cells.63These results show that
the
activationof
thePI
3-kinase is critical
in
HGF/Met-mediated cell dissocia-tion and motility of epithelial cells.An
interestingpoint is the
involvement
of
the small GTP-binding proteins Ras, Rac and Rho, in the regulationof
the
migratory responses induced by HGF/SF. Different data have been reoofiedon
theRas
involvement
in
Met-mediatecl cèI1 migration.Expression
of
a dominant negative mutant Raspro-tein
or
the
injectionof a
neutralising antibody forRas
in
MDCK cells blocked HGF/SF-mediatecl cell dissociation and scatter. This demonstrates that the Ras pathu,'ayis
essentialto
mediatethe
motility
signal
of
HGF/SF-Met receptorto
the cell-ceil adhe-sion system andthe
cyoskeletonof
MDCK epithe-lial ce11s.6:In
addition. microiniection of an activatedform
of
Ras promotecl constituentcell
spreacling.6aOn the other hand. MDCK cultured cells transfected
with
a Met mutant, where the Grb2 binding site wasspecifically abrogated,
but all
other effectors could bind, were still ableto
dissociate and migrate. This shows thata
directlink with
Grb2lRasis
requiredfor
transformation,but
it
is not
essentialto
trig€aerthe scatter response in MDCK cells.65
Moreover, microinjection
of
MDCK cellswith
adominant
negative
mutant
of
Racinhibits
cell
spreading
and actin
reorganisation
induced
byHGF/SF, showing
that
Rac playsa
cn:cial role
in mediating the HGF/SF inductionof
these events.61On the
other hand,
it
hasbeen shown that
the HGF/SF-mediateclcell motility of
cultured mouse keratinocytes requires the involvementof
Rho, butnot
of
Racand
Ras.66However,
PI
3-kinase has been shownto
be involvedin
the selectiveactiva-tion of
Rac and Rho,(,' therefore the possibility thatMet involves Rac and Rho
via
activationof
the
PI 3-kinase cannot be ruled out.Interestingly those, has been observed a
redistri-bution
of
E-cadherinand
desmoplakinsI/II
fo1-lowing
HGF/SF stimulationof
epithelial ce11s,6s aswell
as
the phosphorylation
of
B-catenin
and plakoglobin,6e demonstratingthe
existenceof
acontrol-effect
of
the Met
tyrosine kinase receptoron the
adhesive elementsconnecting
cells
andregulating
cell
locomotion. Moreover,it
has been demonstratedthat
HGF stimulatesmotility
in
oral sqlramous carcinomacells
mediatingthe
assem-bly/disassemblyof
focal adhesionsby
involvement of P12lnak.;oRecently,
an
increasing
number
of
signalling moleculeswith
properties similarto
HGF/SF havebeen
characterised,both
in
physiological and
inpathoiogical cells.
A
Scatter Factor-like factor (SFL)has been identified as
a
Daîàcrine effector molecu-le. produced by a metastaticvrrirnt
of
atrrcinomr
cell
line.rr Another
newly
discoveredfactor with
scattering activity has been identified
in
a monocy-te-conditioned medium as stimulatorof
tumor
cell motility.T2 Manywell
characterised cytokines (e.g. aFGF, IL-6, EGF, and TNFcr) have also been foundto
induce dispersion
of
epithelial cell
colonies,migration, and invasion
of
human
carcinomacells.6e 13 -1
These scattering agents
all
share the propertyof
scattering epithelial cell colonies, but have different
cell type
specificity:
SFLand
HGF/SFdo
scatter MDCK cells, whereas aFGF, TNFcx, EGFand
the Monocyte Factordo
not. On the
other hand, EGF induces MDCK ce1l proliferation. Thus, the specific effects elicitedby
a factor dependson
the typeof
target cells as
n'ell
ason
the extracellular environ-ment.Macrophage
Stimulating
Factor (MSP) Macrophage stimulating Protein (MSP) was origi-nal1y discoveredby its ability
to
make
resiclentperitoneal
macrophages responsiveto
the
che-moattractant C5a of the complement.T5
Macrophage stimulating Protein (MSP)
is
an
80SA\'IOIìO
KDa clisurlphicle-linked heteroclimer
which
belongs to the HGFr'SF farnily-t
MSP is synthesizeclby
liver cells, circulatesin
bloocl asa
biologically inactive precLlrsor and is clea'u.eclby
membersof
thekallik-rein
family, as n'el1 asby
nacrophage bounclpro-teases.'- tii
Functional stllclies har.e revealed that,
in
adclitionto
macrophages, MSP acts :rlsoon
other ce11 linea-ges. These incluclegron'th
stimr,rlationof
certain epithellalcell
lines, suppressionof
colony
forma-tion of
human bone m:rrrou,' cells indr,rceclby
steelfactor plr-rs GA4-CSF, and incluction
of
IL-6produc-tion
in
primary
hurnanrnarrow
megakaryctcvtes.The receptol
for
NISP n-:rs icientified asthe
RONgene prodLlct, zr transmemltrane receptor protcin tyrosine kinase, clonecl fror-n a human keratinoel-tcs cell line.r'r T1-re Ron gene encodes
a
185 KDa hete-roclimeric protein ccxnposecl ctfa
35 KDa extracel-1ular cx-chainand
a
150KDa
transmembraneB-chain
u'ith
intrinsic tyrosine kinase acti\.ity.s0 sr Ronbelongs
to
a
subfamill-of
receptor t1'rosine kinasetl-rat includes Sea and the proto-oncogene N{et.
As
the
HGF/SFplototypc
r.,fthc family,
À4SP iseqr-raily able
to
incluce cell prolÌferation rìs q,ell :rsceli
rnotility
on
epithelial
cells 82 anclon
mnrinekcr:Ltinocytes.s3
The À4SP/Ron receptor can he constitlltiveiy acti-vated
in
the absence of t1-re lisancl erther asI
natu-rally
occnrling splicing verient
rA-Ron)
or
byexprcssing molecr-rl:rr chimaeras
with
constitr-ÌtÌvely climelizecl kinase clomalns (Tpr-Ron).In
these con-ditions the signalling evokedby
the active tyrosine kinase inclucesa
strongnìotile
and invasirrephe-not,vpe.8'i
Recently
it
has been clemonstrated thatthe
acti-r.ation of PI 3-kinase is an absoluLte recluirement for MSP-inclucedcell
migration
in
keratinocytes and epitl-relial cel1s.85Motility
inclucedby
Ronis
incle-penclentof
the
thresholdof
N{AP-kinzrselevel of
activation. suggesring that the Ras pathwey is not a
critic:rl
stepfor
MSP-inducedcell
r"nigration. TheRas threshold required
for
the
scattering response is far lower that the necessaryfor
grow'th and tran-sfÌrrmation.s(rfte1
fulfils the
requirementsfor
acti-vating
cell
dissoci:rtionand matrix invasion
andprovides zr naturally occurring example
of
dissocra-tion
between
the
two
arms
of
the
biolosical
responses triggerecl by tyrosine kinase recept()rs.
Cell
morrement
is
a
critical
steo
in
nornal
embryonic clevelopment,
tlrmor
metaitrsis,inflam-NIOTOGENTC Cì}ìO\ÍI-H FACTORS: HGF/SF ANI) I,{SP
matory
responses,and
wound
healing. The
factthat HGF/SF and MSP elicit motile-invasive respon-ses indicates
the
important
role
played
by
these factors ancitheir
receptorsin
cell
physiology anclpathology. In particular. a possible role for Met and Ron can be envisaged
in
tumor progressictn towarcl metastasis.References
1. Erickson CA. Cell rnigration in thc'enìl-yo end adult orllanisrn.
Crrr.r.Opin Celi Biol 1990:2óf -74.
2. N{rtchison TJ. Cramer LP. Actin basecl cell rnotility and cel1 loco,
motion. Cell 1996: 81+: 371-9.
3. Cramer LP, X4jtchison !J, Theriot JA. Actin dependent mottle
forces ancl cell nrotilitv. Curr Opin Cell Riol 1994tó:82-6.
.1. Jockusch ll\{. Btrbeck P, Giel K, Kroerrkcr Nf . N,loscl'rner J.
Rothkegel \'I. et aL. Thc molecular architecture of focal aclfie sicrns. Ann Rev Ccll Dev Biol 1995:71:319 476.
5. Tr.rrner CE. BLrn-iclge K. 'liansmenbrane molecr:lar assemblies
in cell ertracelhilar rlatrix interactions. (ìnlr Opìn Celì Ujol
199.1r3:8'19 53.
6. H1'nes RO. lntcgrins: r'ersetilitt'. modlrlxtiolì. anci signalling ìn
focel aclhesion. Cell 1992:69:11-25.
7. (lr-rmbiner BN,l. Proteins irssoci:lted n'itl'r the cytopLasrrric sr.rrface
,,f-:r,llrc.i,,n nt. ,lr( rl r. \cllron l.)oJ: I l: ;í l-il t
8. Hvr-rcs RO. Lander AD. Contact encl adhesivc spccificitf in the association. nliÉaretions. ancl targeting of cell and 'axons. CcÌl 79()2$8:303-22.
9. Schnartz N1A. Schellel NID. Ginsberg \,IIì. Intcgr-ins: emerging p'.rracligms of signal tr'rnscluctioll. Ann Rct' Ct-11 Dev tsiol 1991;7I:5+9 99.
10. -fuLano lìL. Heskill S. Signal tr.rnsduction fiom the extriìcclÌLrler
m:rtrir.,[ Cell Rìol l9c)3r 1 20:577-85.
.l L Clalk Er\.
Brr:gge JS. lntegr-ins ancl signal transcluction
pathn':rys: tire road taken. Science 1995;268:233 9.
12. Burridge K, Tr-u-ner CE, lìomer LH. T.vrosine phosphorylation ot paxill:in encl pp125FAK accon'rpanies cell eclhesion to extracel
lul..rr nratrix: :i role in cvt()skelctel assernblv. J Cell Rioi 1992;
1t g:893-gil3.
13. Tnr-ncr CE. Paxillin: a cvtoskeìetel target for tvrosine kin'rses.
Bìo:rss:rys 1991,16.47 52.
1,1. Lo SH. V'einsberg E. Chen LB.'l'ensrn: a poientjal ltnk betnecn
the c,vtoskeleton ancl signal transduction. Bioassays 199ti;16,
81r 23.
.15.
Chen HC. Appecldr-r PA. Parsons JT. Hildcbrancl JD. Schallcr
À4D. Gu:rn JL. Interaction of focal acliresion hinase q,'ith
cvto-skeletal plotein talin. J Rìol Chem 799i2t-01699t 9.
16. Schaller M, Parsons JT. Focal aclhesion kìnase ancl :Ìssociatecl
proteins. Curr Opin Celi Biol 199,|6:705-10.
1f . 'l'r-rlner CE. N1iller JT. Prim:iry seqlrence of paxillin c()1ìtirirìs
ptLtative SH2 and SH3 clomain bincling motif,s :rnd multiple l-IN4
domains: identification of a vìnculin ancl pp125 fÌrk bincling region..f Cell Sci 1994:107:1j83 91.
18. Flall A. Small G'l'P bincling protein:ì ancl the regr,rlation of the actin cytoskelebn. Ann Rev Cell Dev Rìol 7994:10:31 54. .19.
Nobes CD, Hall A. Rho, Rac rncl Cclc 42 GTPases rcgulrrc thc assernbly of rnultimolecr-rlal focaL complexes associated witir
actin stress filrers, lan'rellipodia, ancl filopoclia. Cell 1995:81:53-62.
20. Hall A. Ras related GTPases ancl the cvtoskeleton. N{ol Ce1l tsio1 '1992\31475-9.
21. Chong l.l). Tr-avnor-Kaplan A, tsokoch G,Vl. Schq'artz
'VlA. Thc
srnall GTP-binding protein Rho regulates a phosph:rticlvlinositol
.1 phosphate 5 kinase in m:rmmalian cells. Ccll 199479:107-I3.
1.) 2()
NIOT'OCENIC GROWTI I I]ACTORS : I IG I], SI-' A\ D N,ISP
J.+ J(r JO 31. 3l l-l1
Stossc'l 'l'P. ()n the cral,limg of rnintal cells. Scienr.c 1993:260:
l08b 9+.
Riclle,v .{ì. Hall A. Tlie small CìTlJ-bincling protcin lìlxr regrriatc
ihc xsserrìl)l)-of fctcal:rclhesions ancl.ìctin stress fìllers in
resp()nse to gr-on'th f:rctor-s. (,ell 1992170:389,99.
Ricllet' A-J. Pîtcrson AF. .lohnston (ll_. l)ìekrtrann D. He11 A. 'fhc
snraÌl Cl'fl) binclìng plotein Rac lcgr-tlaîes !lr()\\'th fack)f jnclucecl
rurcnbrane rtrfîing. Ccll 1992:r0;.i01, 10.
Chen P. .\ic H. Sekar l\'l(1. (ìLrpta K, Vt'lis A. EGF
reccpror-ntccliatcd ccll motilitr': phospholipasc C acrivitl. ìs requirecì. ltrLr
nì jiogcn :rctj!aIecl l)fotein kin:rse actit itv is not suf l'icicnt for
rnclrrcccl ceìì rrorcnent. .f Celi lìioì 1t1c;\11)i.|'1i-i7.
C.hen HC. (ìrren -lL. StirnLrlation of l)l 3 kjnase associ:ttion n.ith
focrl ediiesion kinase lt1- phtelct (lerivecì gronth f:rcror. .f ìJiol Clrenr 1 9t),1r269 . al 229-33.
V'ennstnrnr S. Siegltahn A. Yokore K. Aniclsson AK. lleldin (lFl.
\lorj S cl ,r1. X,Icmbrirne r-rLfflìng encl chernot:rxis tr:Lnscirrce bv
thc PI)GF re(cptol recluirercl the bincìing sites fì)l Pl J kjn.rrc Oncogcnc i99 i:9:(r5Ì (r0.
Ìerden \'. L'lL-ich A. Grol'th frctol receptol tvrosìne kinesc. Ann Rcr Lliochertr 198ii:i7:'i1.l-78.
Schlcssinger' .1. tillrich A. (lrol'th fìrcror sìgnelling b1- r'eceptor-t\,I-()sine kinuscs. \errr-on 1992;9;383-91.
Fantl \\'J. .loltnson l)E, \\,'illiams l-T. Signalling l)v reccpror r\-ro
sine kinrsrs. Anri lìel lSjochc-rn 1993;ó2,i53-81.
Hclclin C H. l)llcrizatkrn of cell surfirce recel)tol in srgnel tran
sclrtctioir. Cell 1995:iil):2ÌJ 2J.
l):rll'sorL l.. P1'otein moclules encl signallin.q net.vvor-ks. N:rturc
1995:-l--t:5rJ 80.
Ilicììev A.l . ,\lentbranc mffling ancl signxl transcluction.
tsroL.sser s 1t)9+: I ó:.12 1-7.
Koteni K. \'or-tczarr'u K. Hala K. llecla Il, KitanìLlra Y, SakarLc H.
e,/ rtl. lnvolr cnterit of phosphoin()sltjclc 3-kinast in insulin-inclu ceci or IGF I ìnclr-rcecl nrernllane ruffling. EÀ,IBO .J 1994:13: 2ir3-21.
\\èrìnstr()ln S. lles'liins PT. Cooke F. Hala K. \'oncz:tn'u K.
Irasrrgrr \I et al. Activation of phosphoinositicle 3 kinase js
r-ccir.rrrecl fol PDGF stiùluletecl nternltrane nLfÍìing. CLrr-r- lJioi
199+:+:-ìii5-9J
\\'rn:Lnr.r N. Arcero A. PLetclet cìelirccl gfo\\'th f:Ìct()f intlrLcecl
phosphaticìr'linositol -J kin:lsc :Lctilrtion rìlecliatcs :tctin 1s.rn.ul gcrrent rn liil-olrlests Bjochcr.rr.l 1!9 i;-2!lì:51- 2t).
tlooiiel Cì\\'. tlout L L)ou lling AIi. l)riscoll PC. Bor d -J .
\\ntcrllelcl )vID et ttl. Solutjotr stntctltre encl ligelcl-bintling sitc of the SHJ clonrain of the p85 o -slrltrnit oi lthosphetirh.'linosi
Lol J kinrLsc (le l1 L99J:r3:El3 22.
Ii:Lpelìcr lì. Ch..rkrabarri R. (.:tnrlc\ l-. Fai l. (.ori cr-:r S.
Intelruljsatiort of ar:tir atecl l)f rr iF I st clrrr ,1 lrlrr ,splr.rrith'linositol J liinasc compLeres; potcnti:ìl interactictns ltth tlrr nriclotrrltule otoskcleton. Nlol Celi tsiol 199J:1J:ó0i2 6.1.
Han'kins P'1 . FìgrLir-toua A. QìLt R-Cì. Stokoc D. (.ookc f'l'.
\\alters R et crl. Pl)ClF stimulares un increlLsc in tl'lt) Ruc z irr xctivation of phosphoinositide J krnese. CLrlr lSit>l 199i:5: 393-+0J
Par-kcr P.[. PI J-kinase puts CìTP r>n the R:Lc. CLtn l]iol 1995:5r ;t .,-:9.
Tidball JG. Spenccr ùU. Pl)GF stiolulxtLon inchrces phosphorl.
lation of tairn and c,vtoskeletal rcorganisxtioll in skcletel tnuscle. .l Cell llìol I9c)3;123:62 t-,35.
lìankin S. lìozengurt E. PDGF modLrlation of focel acllìesion kin:rsc ancl paxilltn tyrosine phctspholt'lation in Sn'iss 3T3 ct-lls.
-J Bicrl Chenr 1991:269:t-01-10.
Bartfèlcl NS, Pascluelc EB, Cìc1Losk1..lE. l-xnÉalr jro Llì. l'he cxVF3
integrin rssociates n,ith e 190 kl)a protetn tfret is phosphorvla-tecl on tvrosinc Ìn response ro PD(ìF. .J Bìr>l (ìhenr 1993:268:
7 t-2:0 6.
\-ettcl À'IL. lìishop .fNL RPI)GF rcccìptor nìLltrnrs clefèctive firr
nritogcnesis prolnote nenlite oLttgron'th in PC12 cells. Cur-r- Biol
1995:5:1ó8 78 14.
sA\11)lì()
ciell Hrrtiglì.J(ì. ren Bclgcn en llttlcsoulrn Ir\1. \ct-lilcij Af. 13(ronstra \1. t'he F.(ìF lctcptor is en actin lrrncltng protttn .l
Cell lliol 19!)2:119:J+9 55.
Nlolrison l)h. ìiaplan DR. Rhee St-1. \\'illi:uns l-'1. 1,1:rtcltt ticrj ved growth fuctot' (PD(lF) cìeltcnclcnr :Lssociutjon of pÌrospitoli pasc (ì \- l jih tltc Pl)CIr tc'ccptor-sìvtrlrlÌrng conrltLcr. trl()l (.rll tsioL 1t)90: l0:2Jjt) 1r1r.
GolclscLuriclt Clermont P.[. \lechcskt' i.,\1. l3ulclussullt' .f 1. l)ollertl
'I'l). Thc uctìn l)illcling prrxcìn
1>rofilin lrintls ro l)ll)l:rntl inlti
bits jts lrr.cllolvsis bl phosl;holipasc (ì. Scicltr 1990:lilrL5ri S.
Helclnren A\\/. (ìolclrcltlriclt (,lennonr t,-J. (,ell sisn:tllirrg lncJ
lllotilitl ectivlL\,. Sr,-nrp Soc lj-rp 13iOi 199J;+=:-Jl- 2+.
\:r.roli K. RLrosl:tthi E. ,\ssocietion of insLrLjn rccept()r sultst:urc-l
lith integrirrs. Scicnce 199'i:2(r(trl5 r(r L
Kìenrkc 1ìL. \tbre Nl. IiaV|re 8tr.1. Clrclcsh i),'\. lìtccl)r()r r\ f()ir ne liinesc signelirng rccluir-ccl fìl intcgrin rlltlt:i v iref:r 5 rlirtc
tccl cell nr()tilitl l)Ltt n()t lrclhcsiort on r iilorLcctin. .l (,ell ÌJiol
199.+: l lr:,959-6(r.
Scrr e H cl 1//. Difk'fclltiel lrlcs of l)l j kìnese :rrrd Kit tvLosirc
82 1 ir-r hit rercJltor ntecìiutecl pr()life fiLti()n. srrlr ivlrl :Lncl ccll
:tcìhcsion in nlLst cclls. E\,lIJ().J 199i:Ì+:.i-.J 8j
NIc\enrcc H-\1. lngbcl I)E. Schnertz \1,A.. Aclhesiol r() ljl)11)ne(
till stillruLrtcìs inosìtoL liprcl s\nthcsìs iLn!1 enlì:r1l(es l)lXìF irrr[L
cccl in()sitol lipicl breekclo*n. -l (lell IJiol l99lr12Ì:(r-J -8.
ScÌr\\'artz XfA. lngbeI l)E. h)tcgftrtil]g $ith intc.giins. JIOL (_r:11
Fliol 199,i;5:J89 9J.
Chong LI). 'l'ret'not-liapl:rn A. Uokocli (lXl. Sch\\ufrr \1,r. '1
hu
srrell (ìTP-lrincling ;l-otcin 1ìho lcgLrletcs rr ltlrosph:LLirlt iitrosìtol + Ph,,\llhrlc 5 l<in.r:c 1r llllutlrxliirrì celis. tlcll 199+i-i):;()- Ii.
V'lrn R. A sciìtterjnc 01 l:rcto|s. (lrril lljol i99+:+:Ì()lj i.
NalcLini l-. \\"erclnel K\1. \'igne F.. (ìeLrcljno C. Lì:trtìcllì .\. Pcrnzctto ('. el al. Sciìttef Fitctor :Lntl Hclt:Ltocrtc (llo*llr l':Lr'1ot'
erc inclistingLrisheìrlc ligencls 1ìl- tlrc -\lcr rc( rl)1( )r'. lÌ\ltJ( ) .l
199lrl0:2EÓr r8.
N:tk:tntrLr-:r 'l'. \ish jz:rs :L 'l . Hegìr e. Sclir '1 .
Shrnonislt j \l Srt{:inllrr:r -\ l,/ zl1 \iolccrrlal cklting :utcl r-.'ltlessiorr oÌ lirrlrtrLn
hc1-Irtocrte gro\\'tll f:Lct()f. \ltLrl'c L9li9:j I]: I+()-J.
Ciolchno S. Ponzctto (.. l)r Reuzo lll. (-ooltcr CS. Contoglio P-\I. T,, r'osinc irLlt:tSC reccl)t{)r ìr'Lclistin.quish:rltlt lìrrnt tlrr c r\ler
protern. \etrrrc 19,99:3J9: Ì51 (r.
\alclini L. \ ignl l-. |cnecirri R. I-ong:rti l). (ìenclirto 1.. I)r:rt -\l cl
:t1.. Trt-osine kinasc crLcctcìecl ltr thc -\ll--l' lloto ()lL r,r-utlL. ir ircti\'rtc.ì ìr' :rLrtophosphon'l:Ltion. \krl Ccll Iliol I99l: Ì I rI -9.J s0.J
l)onzetto C. llelcìelli A. Zircn Z. \leine lì. I)ell:r Zorri:r Ì).
(lic;r'tl:Lno \ el al. A ntLrltiiìLnctiorì:rl clocliing site rtrccli:LIcs
srgnllling :rncì tr':tnsiornt:Ltron ltr thc ilcl)xt()c\tc Cr-os Llr
FiIct()r Sc:Ltter Fir(t()l rccept()t f:Lntilr'. CcLl lt)9 lr-l:261 ;1. Ror:rl I. l):L|k JI. HcpuLr>ctte gfrt$th f:rctor'ìncìtrcccl Scuttcr- oi \IDCK cells rccluilcs plrospltetjtìrLinosjtol .J I<itresc..[ lJj()l (]lrctìì lix)i r-a)
r--xi)--l)crnr:Ln l\lP. (lLrniLe \,f . 13:Lnos Fì. Nlgulr 5. (.enrlev l.(i ll(;ij
nre clilttccl cLremottLxjs :Lnc1 tultr-tlogcncsìs rcqlrile :rclir':Llirrt ol tlrc phosphrLticlvln()sitol J-liinlrsc. Anr .f l)hy sìo1 1995:2(r8: Ì 2 1 Ì -.
Hartmenr-l G. \\ieitlner KNl, Sclrs':Lrtz II. Bir-clrrncvct \\'.'l hr
lll()tilit| Signlì1 of scettcÍ fart, ,1 l1q|.11, ,( )-tc Sr, ,\\ rit t.i( l()t lllcrlix
tccl tllough thc rcceptor tvrrsirLc liin:rsc Niet tcclrrìrcs itrtr':tr'eì
Iular :tction o1 1ìas..j lìoì (lhcnr I99+12ó9:2I9J(r 1).
Ricilcv A.f . Cìomoglio PÀ1. Hell r\. ììcgul:ition of s(xrter f 1t!'r()r
heplLtocvte gro\\'th fìct()r l-cspotìscs ltV iì:rs. lì:rc. :Lncl Rlto 1n
N{L)CK cells l\{oL Ccll Biol 1995;15: I 1 10-22.
Ponzetto C. Zhen Z. ALrclcro L..\leina F. llelrlt'lli A. LJ:tsilc \11-.
ct a1. Specific uncouplilte ol Clb2 fr'ont tltr \Ict r-ctcptor': cìiffe
rentiel effcct on translìrr-nr;rtia)ll itn.J ntotilitr. .J 13to1 Chcnt It))(:27'l;1i119 23.
f'akaishi K, Sasalii'ì. liato \'1. \'lurtochi \\'. KLrlxlrr S. \rLli:Lrrrirr':L
T r,/ rzl. InVOlrerììc.nt ()f tìho 1t2l sntell Cì'II) ìrincLing ltloteì| :rncl
its lcgulator in tfLc HCF-incktcecì i'eìl rìl()tilit\'. ()ncogcne 199t:
().fr3 () ll i1
tl
5l Lltl ó1 ÓJ is 59 i5 56 lò +1 ó1 0) (]llSANTORO
67. Reif K, Nobes CD, 'fhomas G, Hall A. Cantrell DA.
Phosphati-clylnosirrl 3-kinase signaÌs activate a selective subset of Rac/
RHO-dependent ef'fcctors pathways. Curr tsiol 7996;6:7445-5.
68. Royal l, Park M. Hepatocyte !ar()s,'th factor inclucecl Scatter of MDCK cells requires phosphatidylinositoÌ 3-kinase. -l Biol Chem
7995:270:27780 7.
69. Shibamoto S. Hayakan'a M, 'I'akeuchi K. Hori T, Oku N,
Miyazau'a K et .tl. Tyrosine phosphorylation of beta-catenin and plakoglobin enhanced by hepatocyte growth factor ancl
epidermal growth factor in hunan carcinoma cells. Cell Aclh Comm 199,i;1:295-305.
70. Matsumoto K, Nakamura T, Kramer RH. Hepatocyte Gro\\rth
Factor/Scatter Fact()r induces t_vrosine phosphorylation of focal
adhesion kinase (p125Fak) ancl promotes migratlon ancl inva
sion by oral squamous cell carcinoma cells. .l I3iol Chcm 7994:269:31801'12.
71. Bellusci S, Moens G. Thiery JP, -fon:rnneau J. A scatter f:rctor
like fàctor is produced by a metastatic variant of a rat bladcler
carcinoma Line. J Cell Scr 7994;707:7277-87.
72. Jrang \X/G, Puntis MCA. Hallett M. Monocye conditionecl mecùa
possess a novel factor whicl-r increasecl motilitv of cancer cells.
Int J Cancer 1993\53426-37.
73. Valles AM. Boyer B. RadetJ, Tucker GC, Rarritault D, Thein-JP.
Acidic flbroblasts groq,'th fàctor is a modulator of epithelial pla-sticitv in a rat bladder carcinoma line. Proc Natl Acac Sci USA 1990:87:1 12'l 8.
74. Tamm I, Cardinale I, Krueger J, À,lr.rrphv JS, Nlat' LT. Sehgal PB.
lnterleukin-6 decreases cell-cell association and increases motilin of dr,rctal breast carcinoma cells..J Exp Mecl 1989;170: 1649 69.
75. Leonard Ij and Skeel AH. Enhancement of spreaciing. phagocl. tosis and chemotaxis by macrophage stimulating protein (N{SP) ndr Exp Med Biol lq-o: l2lB: l8l-04.
76. Yoshimnre T, \-tihkj N, Wang MH, Skeel A, Leonard IJ. Cloning.
sequencing and expression of the hr:man Macrophage Stinulating Protein (MSP) confirms as a kringle protein and
\4OTO'FNTC CRO\TH |\C'IOÌTSI H'f SF \\N \4CT'
l:..,-rr_.: the genc on chromosome 3. -l Biol Chem 1993;26Éì:
1)401 /.
\irang MH. Yoshimura T. Skeel A. Leonarcl IJ. Proteolytic con version of single chain precursor MSP to a biologically active heterodirneric by contact enzymes of the coagulation cascacle. J
Iliol Chem 1991;269 :3136,10.
\Wang MH. Skeel A, Leonard IJ. Proteolytic cleavage and
activa-tion of pro À4SIr by resiclent peritoneal macrophage memlrrane
proteases. J Clin Invest 1996;97:720 26.
Ronsin C, Mr-rscatelli F', Mattei NlG, Breatnach R. A novel
putati-ve receptor protein tyrosine kinase of the Met family. Onccr
gene 1993;8:1195 202.
Gaudino G, Follenzi A, Naldini L, Collesi C, Santoro M, Gallo K-\ et al. Ron is an heterodimeric tyrosrne kinase receptor acti vated by the HGF homolog MSP. EMBO J 199413:3524-32.
\Vang MH, Ronsin C. Gesnel MC, Cor:pey L, Skeel A, Leonard
EJ, et al. ldentifìcatron of tl're Ron gene product as the leceptor of lruman MSP. Science 1991;266:117 9.
Nledico E. X4ongior'ì A, Hr-rff .J,.lelinek MA. Follenzi A, GaucLno
G et aL The tyrosine kinase receptor Ron and Sea control "scat
teriné1" and morphogenesis of liver progenitor cells in uitro.
Mol tsiol Cell 1996:7:19i-504.
V/ang !lH. Drucos AA, Si-rn Y, Suda T, Skeel AA, Leonarcl IJ. N{SP indr-rces proliferatkrn :rncl migration of human
keratinocy-tes. Exp Cell Res 1996:226:39-16.
Collesi C. Santoro IVINI. Gauclino G, Comogìio PM, A splice variant
of the Ron transcript incluces constitlrtive tyrosine kinase activiry
and an :invasive phenoq'pe. Nlol Cell Biol 1!!6;16: 5518-26.
\\'ang IIH. l,lontero-Jr-rlian FA. Dauny I, Leonarcl IJ. Requirement of Phosphatidllinositol 3 kinase for epithelial cell_migr'.rtiun rLti\-rtr hy human MSP. Oncogene 1996;13:
_ro -/).
Santoro MM. Collesi C, Grisendi S. Gaudino G, Comoglio PM
Constitutive activation of the Ron gene promotes ìnvasive gron.Íh blrt not transformation. N{ol Cell tsiol 7996;16:7072 83.
fll -7 78. 79 fl0 82 83 ò+ fró