• Non ci sono risultati.

The role of EPS in the foaming and fouling for a MBR operated in intermittent aeration conditions

N/A
N/A
Protected

Academic year: 2021

Condividi "The role of EPS in the foaming and fouling for a MBR operated in intermittent aeration conditions"

Copied!
12
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Biochemical

Engineering

Journal

j ou rn a l h o m ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / b e j

Regular

article

The

role

of

EPS

in

the

foaming

and

fouling

for

a

MBR

operated

in

intermittent

aeration

conditions

Riccardo

Campo

a

,

Marco

Capodici

b

,

Gaetano

Di

Bella

a,∗

,

Michele

Torregrossa

b aFacoltàdiIngegneriaeArchitettura,UniversitàdiEnna“Kore”,CittadellaUniversitaria,94100Enna,Italy

bDipartimentodiIngegneriaCivile,UniversitàdegliStudidiPalermo,Ambientale,Aerospaziale,deiMateriali,ScuolaPolitecnica,VialedelleScienzeed8,

90128Palermo,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received18April2016

Receivedinrevisedform29August2016 Accepted16November2016

Availableonline18November2016 Keywords: IA-MBR Filamentousbacteria Foaming Fouling EPS

a

b

s

t

r

a

c

t

ThisworkinvestigatesthecausesoffoamingandfoulinginanIntermittentAerated–Membrane BioRe-actor(IA-MBR)usedforwastewatertreatment.Theexperimentwasdividedintothreeperiodswith differentaeratedregimesexpressedwithdifferenttaeration/tcycleratio(PeriodI:60min/180min,PeriodII: 80min/180min,PeriodIII:30min/90min).

Theadvancedfoamingtestsusedallowthestudyoftheroleofextracellularpolymericsubstances (EPSs)onfoamingandfouling.Ingeneral,inthePeriodsIandII,goodcorrelationsbetweentheEPSs andtheModifiedScumIndexwithoutpurification(MSI0)andtheFoamPowerwereobserved.Theresults shownthatthefilamentousmicroorganisms,whichmainlygrewinthePeriodIII,playalsoakeyfactorin thefoamingandfouling.Inparticular,whenanetproliferationoffilamentousbacteriaoccurred(during periodIIIwithahighernumberofcyclesperday)bothEPSsconcentrationandfilamentousabundance influencethemodifiedscumindexobtainedaftertwopurificationsteps(MSI2).Finally,theprocessing datashowthattheEPSshamperedalsothemembranefiltrationbutimprovethepre-filtrationactionof cakelayer.Ontheotherhand,theco-presenceofEPSsandfilamentousbacteriareducedtheeffectocake layeraspre-filter.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Membrane Bioreactors (MBRs) represent nowadays a

well-consolidatedadvanced available technologyin orderto comply

withstringentmandatoryrequirementsintermsofquality

stan-dardsof treated wastewater.Indeed, MBRsystems guarantee a

highereffluentqualityalsointermsofpathogenicbacteriaremoval,

alowerecologicalfootprintandalowersludgeproductionif

com-paredtoaconventionalactivatedsludge(CAS)system.However,

thegreatestdownsideofMBRsisrepresentedbytheoccurrence

offouling andfoaming phenomena[1].Membrane fouling

con-sistsof thedepositionof particlesonthemembrane surfaceor

colloidalparticleswithintheporesofthemembrane.Thetangible

consequence of fouling is representedby an increase of

trans-membranepressure(TMP)yieldingareductionofpermeabilityand

thusadecreasingeffluentflow[1].Fourgroupsoffactorsaffect

membranefouling:membrane materials,mixedliquor features,

influentwastewatercompositionandoperatingconditionssuchas

∗ Correspondingauthor.

E-mailaddress:gaetano.dibella@unikore.it(G.DiBella).

sludgeretentiontime (SRT),hydraulicretentiontime(HRT)and

foodtomicroorganismratio(F/M)[2–4].Particularly,the

mem-branefoulingisstronglyinfluencedbymixedliquorfeatures.More

indetail,amongothersparameters,sludgeviscosity,mixedliquor

suspendedsolids(MLSS)concentration,presenceandabundanceof

filamentousbacteria,extracellularpolymericsubstances(EPSs)and

solublemicrobialproducts(SMPs)concentrationsarerecognized

tobethekeyfactorsaffectingthemembranefouling[5].Despite

manyauthorsoutlinedthatmembranefoulingispromotedbyhigh

EPSconcentrations[6,7],thereisstilluncertaintywhetherfouling

resultsmainlyinfluencedbyproteinsorpolysaccharidesfractionof

EPSandSMP.Suchuncertaintyislikelyduetodifferencesin

exper-imentalmethodsavailableforEPScontentassessmentandalsoto

thedifferentconfigurationofMBRtreatmentplants[3,8].

Ontheotherhand,thefoamingrepresents,aswellasfouling,

anotherdownsideofMBRsthatcanleadtoasignificantdecreasing

ofbiologicalperformancesofMBRsandalsotoadecreasein

mem-branefiltrationefficiency[9].Foamingarisesasaviscouslayeron

thesurfaceofwastewatertreatmentplantreactors;itresultsin

afloatingbiomassthatcancauseseriousoperationalproblemsto

thetreatmentprocess.In particular,itispossibletodistinguish

two differentkindof foaming:biologicalfoamingand chemical

http://dx.doi.org/10.1016/j.bej.2016.11.012

(2)

foaming.Thebiologicalfoamingtriggerfactorisrecognizedtobe

theunbalancedF/Mratio;whilethechemicalfoamingisattributed

toa loadingshock caused by thepresence of synthetic

surfac-tants[10].Amongthevariouskindofmicroorganismstraceable

intheactivatedsludge,a significantpresenceof Microthrix

par-vicellaandNocardioformshasbeenobservedusingconventional

microscopyduringbiological foamingoccurrence.For such

rea-son,theaforementionedmicroorganismshavebeendefined“foam

formingbacteria”[11].Furthermore,otherstudiesoutlinedalsothe

presenceofotherbacteriaspeciesduringfoamingoccurrence.For

thisreason,bacterialstrainssuchastheEikelboomType0092have

beendefined“notfamousfoam-formingbacteria”[9,11].

DespitethefoaminginCASisattributedtotheabundanceof

theaforementionedstrains,ithastobestressedthatfoamingin

MBRsystemscanalsooccurintheabsenceof“foam-forming”or

“notfamousfoam-forming” microorganisms. In these casesthe

foamabundancewasattributedtotheconcentrationoftheprotein

fractionofEPS[12].However,bothEPSsandfilamentousbacteria

influencethesludgehydrophobicityandthereforeimpacton

foam-ingoccurrence. Although thefoaming occurrence canseriously

affectthecorrectworkingofaMBR,studiesdealingwithfoamingin

MBRsarescarce[9,12,13].Furthermore,foamingoccurrencecanbe

encouragedbytheimplementationofnewmanagementstrategies

suchastheIntermittentAeration(IA).Althoughsuchprocesscan

offerseveraladvantages[14,15],theintermittentaerationimpact

onmicroorganismscanresultinaproliferationoffoam-forming

microorganismssuchasfilamentousbacteria.Indetails,theIA

pro-cessconsistsofalternatingaerobicandanoxicphaseswithinthe

samestirred reactor.The implementationofsuchmanagement

strategyallowsachievingtheammonia oxidationaswellasthe

nitratereductionsavingenergy.Indeed,theairsupplynecessary

tothebioreactorresultdecreasedandalsotheabsenceofreturn

activatedsludgerichinnitratesfromnitrificationtodenitrification

yieldtheIAacosteffectivesolution[15].However,thepresence

oftheanoxicphasecanseriouslyimpactinthestrains

develop-mentfavoringtheproliferationoffoam-formingmicroorganisms

likefilamentousbacteria[14].Bearinginmindtheprevious

obser-vations,and considering that extensivestudies onIntermittent

Aerated-MembraneBioReactor(IA-MBR)arelacking,thepresent

studyaimstoinvestigatethefoulingandfoamingmechanismsinan

IA-MBRsystemtreatingdomesticwastewater.Specificfoamtests

andadetailedfoulingtendencyassessmenthavebeencarriedout

inordertooutlinetherootsofbothphenomenainIA-MBRsystems.

Furthermore,adetailedinvestigationfocusedtohighlightthe

influ-enceexertedbyotherparameters,suchasEPSandSMPfractions

andconcentration,sludgeviscosity,TSSconcentrationand

filamen-tousmicroorganisms’abundancehasbeenreported,improvingthe

knowledgeaboutthesetwodrawbacksofthisnewandinnovative

MBRconfiguration.

2. Materialandmethods

2.1. Experimentalsetup

ThepilotplantwasbuiltatPalermomunicipalwastewater

treat-mentPlantof“AcquadeiCorsari”anditwasthesameasthatused

byCapodicietal.[15].Inparticular,theIAreactor(400L),theMBR

(50L)tankandtheOxygenDepletionReactor(ODR)(28L),mainly

composedthepilotplant.Thefirstonewasprovidedwith

aera-tionandstirringdevices;theMBRreactorwasdownstreamtheIA

reactoranditwascontinuouslyaeratedinordertomitigatethe

membranefouling;theODRreactorwascontinuouslystirredin

ordertoavoidTSSsettling.AlogicalschemeofthePilotplantis

showninFig.1.

Fig.1. PilotPlantLay-out.

Throughoutalltheexperimentalperiod,thefollowingmost

rel-evantoperationalparametersweremeasured:DissolvedOxygen

(D.O.),pH,OxidationReductionPotential (O.R.P.).Theywereall

monitoredon-linebymeansofprobesappropriatelylocatedinthe

differentsectionsofthepilotplant[15].

Thetemperaturewasnot regulatedandwasaffectedbythe

environmentalconditions(roomtemperature):however,the

vari-ationwasrelativelysmall,changingfrom18to24◦Cduringthe

experimentalperiod.

TheMBRcompartmentwasequippedwithtwoultrafiltration

(UF)hollowfiberGEZenonZW10®modules(nominalsurfaceof

singlemembrane unit:0.93m2; pore dimension:0.04␮m)in a

submergedconfiguration.

Thedurationsofsuctionandbackwashweresetto9and1min,

respectively,withatotalfiltrationcycleof10min.Theplantwas

fedcontinuouslyandthepermeatefluxfromeachmembranewas

equalto20–23Lm−2h−1;whilethenetpermeatefluxwasequal

to17–19Lm−2h−1.

Thetransmembranepressure(TMP)wasmeasuredbymeans

of analogical vacuum-meters connected to the upper heads of

the membrane modules. TMP data were acquired with two

data-loggers connected tothevacuum-meters,stored and then

post-processed.

Theexperimentalcampaign,whichlasted120days,wasdivided

intothreeperiodswithdifferentaerationregimes[15].Indetails,

Period I (lasted 57days) had a 180min cycle length (tcycle)

with60minofaeration (taeration)and120minwithoutaeration

(taeration/tcycle=60/180).InperiodII(lasted47days)thecyclelength

wasthesameasthatofperiodIandthetaeration/tcycleratiowas

equalto80/180.Finally,periodIII(lasted16days)was

character-izedwithacyclelengthof90minwithtaeration/tcycle=30/90.During

thenot-aeratedphase,themixedliquorwascontinuouslymixedto

avoidSuspendedsolidssettling.Themainoperationalparameters

arereportedinTable1.

Biochemicaloxygendemand(BOD5),chemicaloxygendemand

(COD), soluble COD, ammonium (NH4-N), nitrate ammonium

(NO3-N),nitriteammonium(NO2-N),totalsuspendedsolids(TSS)

andvolatilesuspendedsolids(VSS)weremeasuredthreetimesper

weekinordertoevaluatethepilotplantperformance,accordingto

StandardMethods[16].

2.2. Foamingtestandfilamentousinvestigations

Proposedfoamtestsandcharacterizationscanbecategorized

as:

1)Qualitytest:Foamingrateandfoampower;

(3)

Table1

Mainoperationalparameters.

Period n◦cycles/day Ox/Cycle[min/min] Anox/Cycle[min/min] F/M[kgBOD5kg−1VSSd−1] COD[gm−3] NH4-N[gm−3] MLSS[kgm−3]

I 8 60/180 120/180 0,08±0.02 380±48 29±5 ∼2.7

II 8 80/180 100/180 0,06±0.01 483±25 23±3 ∼4.3

III 16 30/90 60/90 0,05±0.01 414±34 19±5 ∼3.7

3)Microscopic observation: Filamentous bacteria identification andabundance.

Generally, foam quality is measured on site by meansof a specificapparatus.Todefinethefoam stabilityand “geometric” characteristics(thicknessandfeatures),theFoamingRate (FMR) is used according to Blackall’s method [17]. The FMR value is

measuredbypouring50mLofactivatedsludgeintoa40mm

diam-eter×500mmhighglasscylinderandbubblinggasthroughitvia

a40–90␮mporesizediffuserat200mLmin−1.

Foamcharacteristicsarerecordedintermsofitsvolume,bubble

size,speedofformationandtimetakenforthefoamtocollapseafter

aerationhasceased(Table2).

FoamPower(FP)evaluatesthefoampotential/stabilityofMBR

activatedsludgeinaccordancewiththeconceptsusedinfood

sci-ence.FPisdefinedas“theconsumedsamplevolume(mL)from

foamingby1Lofaeration”[12].100mLofactivatedsludgesample

isplacedinatransparent7cm2cross-section(A)verticalcylinder

andaeratedfor30s(T)atanairflow(QAir)of5Lmin−1.TheFPis

thendeterminedfromthedifferenceintheinterfacelevelsofthe

sampleliquidandfoambeforeandafteraeration(H0):

FP= A·Ho

T·QAir

(1)

Whilesomewhatrudimentary,FMRmeasurementisusefulfor

quicklyassessing the extentof foaming risk (nonefor FMR=0;

overt/onerousforFMR=6–7).Bycontrast,FPisscientifically

rigor-ous,andessentialforanalysisoffoamingpotentialandpredictionof

foamingrisk.Furthermore,FPhasbeencloselycorrelatedwithEPS

concentration[9],andsocanbeindirectlyassociatedtothe

physi-ologyoftheactivatedsludgeandwithotherphenomenadependent

onthem(suchasmembranefoulingrate).However,bothtestsare

simpleandcanbeconducteddirectlyinsituwithsimilarsimple

equipment.

MoreusefulforfoamingassessmentinanMBRplantisthe

Mod-ifiedScumIndex(MSI)[10].TheMSIallowsthequantificationof

thefoamfractionfromEPS(generallymoreabundantbutless

sta-blefoam)comparedwiththatduetothepresenceoffilamentous

bacteria(usuallylowerinmassbutmorehighlystable).

MSIisdeterminedusinga2-laliquotofactivatedsludge,taken

fromtheaerationtank,which isplacedintheflotationcelland

aeratedatanintensityof10LairL−1h−1for15mintoformathick,

stablelayerofscum.Onceasingaerationthescumlayerisseparated

Table3

MSIclassification.

Effectofscumflotationstep Effectofscumpurificationstep

MSI0[%] MSI1[%] MSI2[%] MSI3[%]

Low 0–10 0–10 0–7.5 0–5

Moderate 10–15 10–15 7.5–12.5 5–10

Serious 15–25 15–20 12.5–17.5 10–25

Excessive >25 >20 >17.5 >15

fromthenon-floatingsludgeandthetestrepeatedseveraltimes (dependingonthefilamentousbacteriacontent)ontheresidual unfloatedmaterialuntilallofthefoam-formingmicro-organisms aretransferredintothescum.Witheachsteptheextractedscumis stored.Thisfirstphaseiscalled“flotationstep”.Theportionofscum separatedinthisphasecontainsthefoamproducedbyboththeEPS contributionandthegrowingbiomass.Thedrymassofrecovered scumcanbedeterminedandtheMSI0calculatedas:

MSI= MassofMassSuspendedofscumSolidsrecoveredinthesample×100 (2) Followingtheflotationstep,thefloatingscumisplacedbackin theflotationcellandre-suspendedwithwatertoatotalvolume of 2L.Subsequently, the“purification step”is performedunder controlledaerationconditionsfor15minandtheprocess of re-suspensionanddilution(withpurewater)isrepeated,withsteps of15min,untiltheamountoffoamformedisconstant.These por-tionscontainonlythefoam-formingbiomass.Theequationabove providestheScumIndexforeachpurificationstepinthe step-by-stepprocess(MSI1,MSI2,MSI3,etc)togaugefoamingpropensity (Table3)basedondeterminationsusingsimpleequipment(Fig.2).

Ingeneral,ithasbeendemonstratedthatthedilutionofthe

sep-aratedscumsamplescouldhaveanegativeinfluenceontheoriginal

impactof EPSconcentration.For this reason,it isbelieved that

theMSI0representsmainlytheeffectoffoamingduetoEPS.

Con-versely,purifyingthefoambydilutionandre-suspensionisolates

thecontributionfromfilamentousbacteria.

Concerningmicroscopicinvestigation,theabundanceand

dom-inanceof filamentous micro-organismsby microscopic analysis

can beestimated using the criteria suggested by Jenkinset al.

[18].Thismethodisbasedonobservingmorphologicaland

phys-iologicalcharacteristicsofbacteria,includingbranching,motility,

filamentshapelengthanddiameter,location,growthofattached

Table2

FoamingRateclassification.

FR Effects

0 Reactiontoaerationasforpurewater.Bubblesbreaksurfacebutareunabletofoamorhavenostability.

1 1–3cmoffoamwithfragile,ill-formedbubbles.Insufficientstabilityoffoamfilms.Immediatecollapseonaerationbeinghalted.

2 Intermittentfilmssufficientlystabletolastfor>5–10s.Usuallygeneratedfromafragilefoamstructureoflimitedheight.Filmsunstableonaerationbeing halted.

3 Foaming(bubblesabout1cmdia.)to3–8cmheight.Infrequentregularfilmformation,withbothfilmandfoamsemi-stableonaerationbeinghalted.Films have10–30sstability.

4 Initially8–15cmoffoam(about1cmdia.bubbles)withstablefilmsbeingformedatregularintervals.Bodyofthefoamandfilmsstablefor3–5minonce aerationceases.

5 Formationofstablefoam5–10cminheightwithin2min;afterwhichcollapseto3–5cmheight,whichisstablewhenaerationishalted.Nofilms. 6 Stablefoam15–30cminheightwithnofilm.Bubblesizeof∼0.5cmduringproduction,increasingto2–3cmdia.within3–5minfromtimethataerationis

halted.

7 Densestablefoam>30cmover2minaeration.Bubblesizeabout0.3cmduringproductionoffoamandmax.1cmdia.within3–5minafteraerationishalted. Foamissufficientlystabletoshownochangeinheight10–15minafteraerationishalted.

(4)

Fig.2.MSIprotocol.

epiphyticbacteria,sheath,cellsepta,cellshape,flocsize,sulphur deposits,andNeisserand Gramstaining.Theabundanceof fila-mentousmicro-organisms(Ab)isevaluatedusingthesubjective “scoring”ofthefilamentsaccordingtotheindexproposedby Jenk-insetal.,assigninganumericalvaluetothepresenceoffilaments onascalefrom0to6[18].

Morespecifically,thequantitativeestimationoffoam-forming

micro-organismscanbecalculatedusinga“fastmethod”.A50mL

sampleisplacedontheslideandthesamplestained(Gramand

Neisser)toidentifythenumberofGramandNeisserpositive

fila-ments.Thisisbasedonthenumberofintersectionsofacertaintype

ofpositivefilamentdetectedalongwiththetotalnumberofsuch

positivefilamentsperunitareaofthemicroscopeslide.Themean

numberofintersectionsacrossfivesamples(XAVG)isnormalised

againstthetotal mass of volatilesuspended solids(VSS)in the

microscopicsample(Vin␮L)andcorrectedforthemagnification

MtoproducetheNormalizedIntersectionsNumber(NIN):

NIN= XAVG·M

VSS·V ·10

6 (3)

wherethe106factorconverts␮ltoL.

2.3. Foulinganalysis

Themembranefoulinghasbeeninvestigatedbymeanofthe

“ResistancesinSeriesModel”[7].Morespecifically,theprotocol

basedonthephysicalcleaningapproachhasbeenusedtodefinethe

characteristicresistancesderivingfromthemainfouling

mecha-nisms.Indetail,theadoptedcleaningprotocolwascharacterizedby

aseriesofdifferentstepsandactionsreproducedalmostidentically

asbetteroutlinedinthefollowing.

1First,permeatefluxandTMParemeasuredduringnormalplant

operations,beforethecleaningaction.Onthebasisofthese

val-ues, thetotal resistancetofiltrationcan beevaluated(Rtot,1),

accordingtoEq.(4):

Rtot,1=

TMP1

J1·␮

(4)

whereJ1isthepermeatefluxofthefouledmembrane[m3m−2s−1],

TMP1isthetransmembranepressureinthesameconditions[Pa],

␮isthepermeateviscosity[Pas]thatisalmostequaltothatof

wateratworkingtemperature.

2Afterwards,themembraneisextractedfromthebioreactorand

physicallycleanedthrough3operationalsteps.Firstly,the

mem-braneisrinsedwithtapwaterat0.4–0.5barfor15min,gently

rubbingthemembranesurface(orthemembranefibersinthe

case of hollow fiber modules). Thereafter, the membrane is

cleanedinpurewater bymeansofmembraneshaking,either

mechanical(forsmallmembranemodulesusedinbenchscale

plants)ormanual(forbiggermodulesusedinpilotplant

appli-cations). Finally, 5min rinsing with ultrapure water (at low

pressure,<0.2bar)iscarriedout.

3Subsequently,thecleanedmembraneisimmersedincleanwater

andsubjectedtoanormalfiltrationcycle(withthesame

(5)

inordertomeasuretheresistancetofiltrationincleanwater

(Rtot,cw),accordingtoEq.(5):

Rtot,cw=TMPcw

Jcw·␮ (5)

whereJcw[m3m−2s−1]andTMPcw[Pa]arethepermeatefluxand

thetransmembranepressureincleanwaterafterphysicalcleaning;

␮isthewaterviscosity[Pas].

4Thecleanedmembraneisthereafterimmersedinthe

bioreac-torandthensubjectedtonormalfiltrationcycles(withthesame

fluxesandeventuallyordinarybackwashingwithanaverageflow

ratenextto900mLmin−1).Itis worthnoting thattheentire

processofphysicalcleaninghadashortduration(about½–1h)

duringwhichtheMLSSconcentrationwasassumedtobealmost

constant.Thus,itispossibletoevaluatethefinaltotalresistance

tofiltration(Rtot,2),accordingtoEq.(6):

Rtot,2=

TMP2

J2·␮

(6)

where J2 is the permeate flux during filtration of the same

mixedliquorasthatofstep1,aftermembranephysicalcleaning

[m3m−2s−1],TMP2isthetransmembranepressureunderthesame

conditions[Pa],whereas␮isthepermeateviscosity[Pas].

Thecakecontribution,duetoeitherreversible(RC,rev)or

irre-versible (RC,irr) phenomena, can be computed, after cleaning,

accordingtothesteps2–3oftheaforementionedprotocol.Inthis

context,thetotalresistancecanbeexpressedbasingonthespecific

depositionmechanisms:

Rtot,1=Rm+RPB+RC,rev+RC,irr (7)

whereRPBistheresistancedueto“PoreBloking”.

TheresistancesRtot,cwandRtot,2canbeexpressedaccordingto

Eqs.(8)and(9):

Rtot,cw=Rm+RPB (8)

Rtot,2=Rm+RPB+RC,rev (9)

Finally,theRISmodelisappliedinthefollowingway,through

Eqs.(10)–(12),inordertocomputethedifferentfouling

mecha-nisms:

RPB=Rtot,cw−Rm (10)

RC,irr=Rtot,1−Rtot,2 (11)

RC,rev=Rtot,2−Rtot,cw (12)

2.4. Viscosity,hydrophobicity,flocdimensionsandextracellular

content

Finally,thefollowingmainparametersthatdefinetheactivated

sludgefeatureshavebeenmeasured:

• Theviscosityofthemixedliquorwasinvestigatedtoevaluatethe

sludgerheologyandtheirroleinfoamingandfouling.Arotational

rheometer(Brookfielddigitalviscometer,modelDV-E)equipped

withconcentriccylindersandanadapterforlowviscositywas

usedtoestimatethemixerliquorviscosityunderconstant

tem-perature(20◦C).

• ForthehydrophobicityofmixedliquortheRosenberg’smethod

wasapplied[19].

• Theflocsizedistributionofthesludgesuspensionwas

deter-minedbyusingaMalvernMastersizer2000instrument(Malvern

InstrumentsLtd., Worcestershire, UK)with a detection range

of0.02–2000␮m.Thecharacteristicdiametersd10,d90anddm

(average)weredetermined.

• The total EPSs (EPST) were evaluated by using the “heating

method”[1,4,20],whichallowstheachievementofthesoluble

fractionofEPST(SMPs)aswellastheboundfractionEPSbound.

Inordertomeasuretheproteinandcarbohydratecontents,the

extractedboundEPSsandSMPswereanalyzedusingLowry’sand

Anthrone’smethods,respectively[21,22].In particular,inthis

workthesumofproteinandcarbohydratecontentwas

consid-eredas:

EPST=[EPSbound,P+EPSbound,C]+[SMPP+SMPC] (13)

wherethesubscriptsymbol“P”or“C”indicatestherelativecontent

ofproteinsorcarbohydratesintheEPSTandSMPs,respectively.

3. Resultsanddiscussion

3.1. Mixedliquorcharacterization(EPS,viscosity,floc

dimensions)

Concerningtheremovalefficiencies,thepilotplantreducedthe

averageinfluentCODof326mg/LtoamedianeffluentCOD

con-centrationof27mg/L(92%removal)inthePeriodI,from421mg/L

to18mg/LinthePeriodII(96%removal),from401mg/Lto14mg/L

inthePeriodIII(97%removal).Ingeneral,eachphase(anoxicand

aerobic)contributedtotheCODremoval,withasimilarspecific

CODremovalinbothphases.

Regardingthe TNremoval, differentbiological performances

wereobservedduringeachperiod.

• InthePeriodI,theaveragenitrificationanddenitrification

effi-ciencieswereabout71%and85%,respectively:theunsatisfying

nitrificationefficiencywaslikelyduetothelowabundanceof

autotrophicbiomassduetolowF/Mratioapplied,thataffected

significantlythenitrificationefficiency.

• InthePeriodII,theaveragenitrificationanddenitrification

effi-ciencieswereabout95%and72%,respectively:inthiscase,the

nitrificationwascompletebecausethephase ofaeration were

higher thanPeriodI (taeration/tcycle=0.44 inPeriod2 and 0.33

inPeriod1);contrarytheefficiencyofnitrificationwasslightly

lower(thanperiod II) becausenowthere aremore nitrateto

denitrified.

• InthePeriodIII,theaveragenitrificationanddenitrification

effi-ciencieswereabout98%and55%,respectively:theunsatisfying

denitrificationefficiencywasstrictlydependentonthenumber

ofdailycycle(withatcycleof90minthereare16cycleperday,

significantlyhigherthan8cycleperdaysofperiod1and2);such

acircumstance(displacementbetweenaeratedandno-aerated

phase)significantlyaffectedthetotalnitrogenremovalefficiency,

thatinperiod3waslowerthan60%,asaveragevalue

Adetaileddiscussionconcerningtheremovalperformanceof

removaloftheplantwasreportedin[15].

On the other hand, someimportant observation concerning

Mixedliquorcharacteristicscanbedonebeforetodiscussfoaming

andfoulingphenomenainIA-MBR.

Duringtheinvestigatedperiodtheaveragemixedliquor

sus-pendedsolidMLSSconcentrationsforthepilot-scaleMBRranged

from5to7gTSS/landtheaveragepercentageofvolatilefraction

wasalmostequalto75%.Theobservedyieldcoefficient(Yobs)was

nearto0.07gVSSgCOD−1.Actually,It’simportanttounderlinethat

themixedliquorsuspendedsolidMLSSconcentrationwaslower

duringtheinitialdays(<7gTSS/l),duetoanexcessivesludge

(6)

0

100

200

300

400

500

600

700

0

20

40

60

80

100

120

EPS bound [mg · gVSS -1] Time [days] EPSbound,c EPSbound,p I II III

0

100

200

300

400

500

0

20

40

60

80

100

120

SMP [mg · gVSS -1] Time [days] SMPc SMPp I II III

0

200

400

600

800

1000

1200

5 12 19 26 29 36 39 41 43 48 50 55 57 60 64 67 71 74 78 85 90 92 95 99 102 105 109 113 116 119 EPS [mg · gVSS -1] Time [days]

EPSt Protein Carbohydrate

I II III

a)

b)

c)

Fig.3.SpecificEPSbound(a)andSMP(b)distribution,inproteinandcarbohydratefraction,andrelationshipbetweenproteinsandcarbohydrateswithtotalEPSs(c).

reduced,theMLSSvaluesrosereachingafinalvalueof7gTSS/land

thereafternosignificantbiomassgrowthhasbeennoticed[15].

TheEPSsinthemixedliquor,thatwereknownaskeyfactorsin

theformationoffoamingandfoulinginotherplants[12,13,23–27],

areshowninFig.3,intermsofEPSboundandSMPsbothinprotein

andcarbohydratefractions

Thepredominanceofprotein,especiallyintheformofEPSbound,

could be due to the presence of large quantities of

endoen-zymes,whichwereliberatedbylysis,andextracellularproducts

intheflocs,dependingonmicroorganismtype,substrate

proper-ties[28,29]andoperatingconditions.Furthermore,due totheir

hydrophobicity,proteinsgenerallyhavehigheraffinityforsludge

flocsthandopolysaccharides[30].Infact,sincethepolysaccharides

aremore readilybiodegradable than protein, theyare

metabo-lized;contrary,proteins,thataremolecularlymorecomplex,tend

toadheretothesludgeflocsbecomingthemaincomponentsof

EPSbound.Ingeneral,theEPSsformationisfavoredinIAconditions

becausethealternationofaeratedno-aeratedrepresentastress

factorformicroorganisms,whichcouldleadtocellularautolysis

[5].

In particular, until day 36 in the Period I

(taeration/tcycle=60min/180min) high values of EPST were

observed due to acclimation of inoculated biomass (collected

from a CASP) to the new IA condition. Subsequently theEPST

decreased,denotinganacclimatizationofbiomasstotheregime

ofalternationofanoxic/oxicphases.AtthebeginningofPeriodII

(taeration/tcycle=80min/180min),there wasa furtherdecreaseof

EPSTthatwaslikelyduetoadifferentmetabolicbehaviorofthe

biomass[31].However,inthefollowingdaysofPeriodII,anew

biomassadaptationoccurredwithagradualincreaseofEPST.

Finally,thePeriodIII(taeration/tcycle=30min/90min)was

char-acterizedbyafurtherdecreaseofEPSTduetothereductionofthe

anoxictimepercycle,withasubsequentmetabolicinhibition.

Finally,Fig.4ashowsthetrendsofviscosityand

hydrophobic-ityduringthethree periods;thesevariables arestrictly related

tothecontents ofpolysaccharidesandproteins, respectively.In

thiscontext, theconcentrationofpolysaccharides results

corre-latedwelltotheviscosityof themixedliquor(Fig.4b).Onthe

otherhand,inFig.4cthecorrelationbetweenproteincontentand

Fig.4.Distributionofviscosityandhydrophobicityofmixedliquor(a);correlations betweenpolysaccharidesandviscosity(b)andbetweenproteinsand hydrophobic-ity(c).

(7)

0 200 400 600 800 0 20 40 60 EPS T [mg · gVSS -1] MSI [%] R² = 0,69 R² = 0,63 R² = 0,97 0 200 400 600 800 1000 0 100 200 300 EPS T [mg · gVSS -1] FP [ml · L-1]

e)

R² = 0,84 0,00 10,00 20,00 30,00 40,00 50,00 60,00 0 20 40 60 80 100 120 MSI [%] Time [days]

MSI_0 MSI_1 MSI_2

I II III 0 1 2 3 4 0 20 40 60 80 100 120 FMR [ -] Time [days] 0 50 100 150 200 250 300 0 20 40 60 80 100 120 FP [ml · L -1] Time [days] FP

a)

I II III I II III

c)

b)

d)

Fig.5.ModifiedScumIndex(MSI)(a),FoamRate(FMR)(b),FoamPower(FP)(c),andcorrelationsMSI-EPST(d)andFP-EPST(e).

hydrophobicityarereported.Ingeneral,thehydrophobicityis

cou-pledtohighproteinconcentrationinthemixedliquor,andthis

circumstancereducesthesludgeaggregation[32].

3.2. Foamingphenomenonanalysis

TheresultsoftheFoamTests,showninFig.5,arerepresentative

forsamplestakenattheendoftheaerobicphase.

DuringPeriodI,theMSI0(Fig.5a)increaseduntil50%(day39th)

accordingtotheincreaseofEPST.Subsequently,itdecreasedto

val-uesintherangeof10–20%attheendofPeriodI.Similarly,inthe

PeriodII,thevariationofMSI0iscorrelatedtoEPSsvariation:

ini-tiallyMSI0decreased(untilday90th)andthenincreasedtoabout

35%.InperiodIII,theMSI0decreasedtoabout20%.Thus,in

agree-mentwithpreviousstudies[9,12],alsoinanIA-MBRthegeneral

trendofMSI0iscorrelatedwiththevariationofEPSSinthe

biore-actor.Contrarily,afterthecompleteprocessof“purification”the

effectofEPSSwas“masked”.Morespecifically,theMSI2wasless

affectedbytheEPST,andshowedatrendsimilartothatof

filamen-tousmicroorganisms.ThecorrelationbetweenMSI2andthelevel

offilamentousabundanceisdiscussedinthenextparagraph.

Thequalityandstabilityofthefoamlayer,intermsofFMRand

FPtestsrespectively,areshowninFig.5bandc.Bothparameters

increasedcontinuouslyduringthewholemonitoringperiod:this

wasprobablyduetothestabilizingeffectofthefilamentousthat

wereselectedduringtheexperiment(seenextsections).

Ingeneral,usingthepreviousFMRclassification,inthePeriod

IandIIthefoamappearedas“fragileanddecreasingiftheaeration

ceased”.Ontheotherhand,inPeriodIIIthefoamlayerwas3–8cm

inheightwith“infrequentregularfilmformation,having10–30s

sta-bility,andwithbothfilmandfoambeingsemi-stableuponaeration

beinghalted”.

ConcerningFig.5c,theresultsshownthatthetrendofFPstarted

froma value nexttoabout 50mlL−1,then it rapidlyincreased

toover250mlL−1(day36),incorrespondenceofasimultaneous

increaseofEPST(mainlyproteinfraction).Subsequently,thevalue

decreasedtoabout50mlL−1byday92.Finally,attheendofperiod

IIandduringperiodIII,therewasanincreaseto150mlL−1andthis

lattertrendismainlyduetothefilamentousmicroorganisms,as

furtherdiscussed.

Fig.5d,esummarizethecorrelationbetweenEPST,MSIandFP

data,confirmingthattheEPSareakeyfactorinthefoaming.In

detail,thecorrelationbetweenMSIandEPSTbecameprogressively

weakergoingfromMSI0toMSI2(Fig.5d).Ontheotherhand,the

absenceofsignificantcorrelationsbetweenMSI2andEPSSconfirms

thatthepurificationstepreducestheeffectofEPSsonfoaming,

infavorofthecontributionoffilamentousbacteria[9,13].In

par-ticular,whenthemixedliquorwaspurifiedfromscumduringthe

foamingtests,themajoramountofEPSwasremovedwiththescum

andsothecorrelationbetweentheextracellularpolymeric

sub-stancesandthesubsequentscumindexesbecamegraduallyless

important.

Finally, Fig.5eshows that alsothe EPSand FP are strongly

correlated. The polymeric and jellynature of EPS, involves the

productionofevermorepersistentbiologicalfoamunderaerobic

conditions,thegreateristheconcentrationofextracellular

poly-mericsubstances.So,FPisaparameterthatsatisfactorilydescribes

the“probability”ofthemixedliquorfoaminginalloperative

condi-tions(suchascausedbyonlyEPS,orcoupledEPSwithfilamentous

bacteria).

3.3. FilamentousbacteriainIA-MBR

Filamentousbacteriaplayanimportantroleinthedevelopment

of sludge features andmembrane permeability. Thus, the

anal-ysisoffilamentous bacteriainthesludge suspension,shownin

Fig.6a,providesusefulinformation.Inthiscontext,themicroscopic

observationsandinvestigationsaccordingtoJenkinsetal.[18]

car-riedoutsinceday44,highlightedthepresenceofthreedominant

speciesof filamentousbacteria:EikelboomType0092, Microthrix

parvicellaand,insmallerquantities,Nocardioforms.

TheEikelboomType0092(“notfamous”bacteria)asoneofthe

dominantspeciesisinagreementwithotherstudies[9,29,33,34].

(8)

Fig.6.Trendoffilamentousbacteria(a)(witha1-a3microscopicobservations)andtheircorrelationswithMSI2(b)andFP(c).

favoredbytheoperatingconditionsimposedintheIA-MBRandby

thelackofdissolvedoxygenduringtheanoxicphases,especiallyin

thePeriodIII.

Correlationsbetweenthedevelopmentoftotalfilamentous

bac-terialspeciesandtheScumIndexandthefoampowerinPeriod

IIIarealsoshowninFig.6(bandc).Itisimportanttounderline

that,converselytothecorrelationbetweenMSIandEPSs,thebest

correlationbetweenMSIandNINwasobservedinPeriodIIIwith

MSI2.Thisresultconfirmstheresultsofpreviousexperiments[9]

andpreviousobservations:ingeneral,thedatashowasignificant

correlationafterpurificationsteps.Furthermore,inthePeriodIII,

thepotentialoffoamingisalsocoupledtofilamentous

microorgan-isms,asconfirmedbythecorrelationbetweenFPandNIN(Fig.6c).

In general, in an IA-MBR, the main foam-forming bacteria

growthstronglydependsonthealternationoftheaerobic/anoxic

phases.

• Fewercyclesperdayandhigherdurationoftheanoxicphasefor

singlecycle,determinedagreaterproductionofEPS,whichwas

themaincauseoffoaminginPeriodsIandII.

• Ontheotherhand,ahighernumberofcyclesperday,asinPeriod

III,stimulateaproliferationofdifferentfilamentous

microorgan-ismsthatbecomeakeyfoam-formingfactorintermofstability

andfoampotential.

3.4. Membranefoulinganalysisandrelationwithfoaming

Thevariationofthetotalresistancestofiltrationisreportedin

Fig.7a.Thetotalhydraulicresistancetrendwasstronglyinfluenced

byphysical cleanings,which alloweda partialrecoveryof

per-meabilityandtheestimationofspecificresistances.Noprevailing

foulingmechanism,betweenthereversibleandirreversible

foul-ing,wasobservedfromtheanalysisandcomparisonofthespecific

foulingresistances(Fig.7b).OnlyinthePeriodIII,theirreversible

foulingmechanisms,intermsofRCirrandRPB,weredominant.

On theother hand, Fig.7c underlines theimportant role of

boundand solubleEPSonthemembrane fouling development.

Morespecifically,thehistogramreportsthesingularratiobetween

eachfactor(EPSs,SMPs,RPB,RCake)andthetotalfractionofEPSTor

RT.Inthiscontext,Fig.7cshowsanoppositetrendforthethree

peri-odswithregardtoEPSboundandSMP.FromPeriodItoperiodIII,the

microorganismsmodifytheirmetabolism,decreasingtheircellular

autolysis(soimplyinglowerreleaseofSMP)[5,31]andincreasing

theproductionofexopolymersasstoragesubstrateintheformof

EPSbound.

Particularly, in Period I, which hasa cycle time of 180min

with120minwithoutaeration,biomassissubjectedtoahigher

metabolicstressthanintheremainingtwoperiods.Successfully,

therewasaslightincreaseofboundEPSboundfraction(from77%in

PeriodIto96%inPeriodIII),whichcorrespondstoanequallysmall

decreaseofSMP(from23%inperiodIto4%inperiodIII).

Contem-porarily,anincreaseofirreversiblefouling,bothasirreversiblecake

(Rcake,irr)andasporeblocking(RPB)wasobservedattheexpenseof

adecreaseinthereversiblefouling(Rcake,rev).

Thefoulingfromirreversiblecakeisattributabletothe

produc-tionofEPSbound,whichgivesagelatinousconsistencytothecake

thatcanberemovedwithaphysicalcleaning.

Theconcomitantincreaseofporeblockingisprobablydueto

de-flocculationwhichtypicallyoccursinaMBRsystem,asdiscussedin

thefollowing,andwhichinvolvesflocdisintegration,witha

possi-bleocclusionofthemembraneporesbydispersedmicroorganisms

andsolubleproducts.

Regardingthefoulingrate(Fig.8a)expressedasincreaseinthe

totalresistanceovertime,itisgreaterinthefirstperiodbecause

thelowconcentrationofTSSinmixedliquoravoidedthe

(9)

Fig.7.Totalresistancefouling(a),specificresistances(b)andinfluenceofSMPsandEPSboundonfoulingmechanism(c).

developmentof a cakelayer,mainlymade ofirreversiblecake,

impliedaconsiderabledecreaseoffoulingratefortheremaining

daysofexperimentation.Furthermore,thefoulingrateisclosely

relatedtotheproteincontentofthemixedliquorexpressedbythe

ratioProteins/Polysaccharides(PN/PS),asshowninFig.8b.Dueto

theirhydrophobicnature(Fig.4c),proteinstendtoadheretothe

surfaceoftheflocs,effectivelyconstitutingEPSbound,and

contribut-ingtotheirreversiblecakedeposition.

3.5. Analysisoftheflocdimensions

The resultsof themorphology observations are reported in

Fig.9a,wheredmtrendsareshownforeachphaseaswellasthe

d10andthed90data.

Ingeneral,thedataconfirmthatintheMBRthebiological

aggre-gatesare smallerthanflocs ina ConventionalActivated Sludge

Plant.Thisisduetotheloworganicloadingrateconditions,and

tothehighturbulence inmembrane bioreactors [35–37].More

(10)

Fig.9. Flocdimensionsvariations(a)andcorrelationbetweenspecificcakeresistancetofiltrationandthemeanflocdimensions(b).

specifically,throughoutthethreeperiods,therewasaslightsludge

de-flocculation.Inparticular,inPeriodI,de-flocculationoccurred

untilday36thwithapartialre-flocculationoccurredattheendof

thisperiodduetotheincreaseofEPSsinthebioreactor(seeFig.4a).

ThePeriodIIwascharacterizedbyaslightde-flocculation,whilein

periodIIIanewre-flocculationwasnoted,partiallydueto

filamen-tousmicroorganisms,whichactasbridgesfortheformationofnew

sludgeflocs.

Consequently,thespecificcakelayerresistance(␣)was

influ-enced by de-flocculation (Fig.9b). In particular, thesuperficial

cakedepositionincreasedwhen theflocsize decreased. In this

circumstance, the permeability of the resulting cake layer was

stronglyaffectedbythepresenceoffilamentousmicroorganisms

orexcessiveflochydrophobicityandsludgeviscosity.

3.6. Considerationontherelationshipbetweenfoamingand

fouling

InFig.10,allcorrelationbetweenthemainoperational

param-eter(EPS,andNIN)andspecificfoulingandfoamingmeasurement

(MSI,Resistances),areshown.

(11)

In general, the high production of extracellular polymeric

substances (Period I and II) involves the formation of a very

hydrophobicsludgethatimpliestheformationofcompactcake

layer,improvingitspre-filtrationaction(Fig.10a).On theother

hand,the filamentous bacteria (Fig. 10b)promote thebridging

betweenthecellularaggregatesand theformationofaswollen

cakewithareductionofthepre-filtereffect(PeriodIII).

Finally,therewassimilarcorrelationbetweenMSI0andFPwith

theRt(Fig.10candd).Thisindicatesthatthephenomenaof

foam-ingandfoulingarenotindependentbutinterconnectedbymeans

ofEPSs.Indeed,anincreaseoffoamingquantity(intermsofMSI0)

andpotential(intermsofFP)inevitablyinvolvesaworseningof

thepermeabilityofthemembrane.Thisresultisapparentlyin

dis-agreementwiththeviewtakenbytheauthorsCosenzaetal.[13],

thataffirmedthatmembranefoulingtendtodecreaseiffoaming

increase.Likely,thedifferenceisduetothehigherpresenceof

over-allEPSboundintheIA-MBR,whichcontributetotheproduction

ofahigherquantityoffoam.Furthermore,inthecurrentwork,the

foamingintheIA-MBRsystemwasmainlyduetotwodifferent

causes:firsttoEPSs(PeriodIandII)andsubsequently(PeriodIII)

tofilamentousbacteriaandEPSstogether.Contrarily,inthe

experi-enceofCosenzaandcoauthors,thefoamingwasmainlycorrelated

toEPSscontribution(withaverylowfilamentousabundance).In

anycase,itisimportanttorememberthatthefoam“persistence”is

relatedtothegeometricfeaturesofBioreactor,whicharedifferent

inbothexperimentations.

4. Conclusions

ThefoamformationoccurredspontaneouslyintheIA-MBR,with

highvaluesof MSI(>30%)and FP(>150mLL−1).In general,the

resultsshowthatextracellularpolymericsubstancesplaykeyroles

infoamandfouling.Furthermore,ifthehighconcentrationofEPS

iscoupledtothepresenceoffilamentousbacteria(asitoccurswith

shortdurationoftheaeration-noaerationcycles)thefoaming

phe-nomenonworsens.Fortheanalyzedcasestudy,inPeriodIandII

(bothwithacycledurationof180min)thefoamwasduetoEPSs

production,asshownbytheMSI0trend.Intheseperiods,thereare

feweraerationcyclesperdaybuttheanoxicphaseforeachcycleis

longer.Ontheotherhand,thehighernumberofcyclesperdayin

PeriodIII(durationofthecycleof90min),despitetheshorter

dura-tionoftheanoxicphaseforeachcycle,promotedtheproliferation

offilamentousbacteriathatbecameakeyfoam-formingfactor,as

confirmedbyFP-NINcorrelation.

However,thisstudyprovidesanewoutlookabouttheroleofEPS

inthefoamingforMBRsandalsoanewinsightintothemembrane

foulingmechanism.

Acknowledgements

ThisresearchwasfundedbytheNationalResearchProjectPRIN

2009(ProjectTitle:ExperimentalanalysisonMBRsystemstostudy

andtorealizeamodeloffoulingincludingthephysicaland

micro-biologicalfeaturesofsludgeandtheoperationalconditionsthat

influencethisphenomenonCUPB71J11000610001);Italian

Min-istryofEducation,UniversityandResearch.

References

[1]S.Judd,TheMBRBook:PrinciplesandApplicationsofMembraneBioreactors forWaterandWastewaterTreatment,secondedition,Elsevier,Oxford,UK, 2011.

[2]F.Meng,S.R.Chae,A.Drews,M.Kraume,H.S.Shin,F.Yang,Recentadvancesin membranebioreactors(MBRs):membranefoulingandmembranematerial, WaterRes.43(2009)1489–1512.

[3]A.Drews,Membranefoulinginmembranebioreactors-characterisation contradictions,causeandcures,J.Membr.Sci.363(2010)1–28.

[4]P.Le-Clech,V.Chen,T.A.G.Fane,Foulinginmembranebioreactorsusedin wastewatertreatment,J.Membr.Sci.284(2006)17–53.

[5]H.Lin,M.Zhang,F.Wang,F.Meng,B.-Q.Liao,H.Hong,J.Chen,W.Gao,A criticalreviewofextracellularpolymericsubstances(EPSs)inmembrane bioreactors:characteristics,rolesinmembranefoulingandcontrolstrategies, J.Membr.Sci.460(2014)110–125.

[6]Z.Ahmed,J.Cho,B.R.Lim,K.G.Song,K.H.Ahn,Effectsofsludgeretentiontime onmembranefoulingandmicrobialcommunitystructureinamembrane bioreactor,J.Membr.Sci.287(2007)211–218.

[7]G.Mannina,G.DiBella,Comparingtwostart-upstrategiesforMBRs: experimentalstudyandmathematicalmodelling,Biochem.Eng.J.68(2012) (2012)91–103.

[8]F.Delrue,A.E.Stricker,M.Mietton-Peuchot,Y.Racault,Relationshipsbetween mixedliquorproperties,operatingconditionsandfoulingontwofull-scale MBRplants,Desalination272(2011)9–19.

[9]G.DiBella,M.Torregrossa,Foaminginmembranebioreactors:identification ofthecauses,J.Environ.Manage.128(2013)453–461.

[10]G.DiBella,M.Torregrossa,G.Viviani,TheroleofEPSconcentrationinMBR foaming:analysisofasubmergedpilotplant,Bioresour.Technol.102(2011) 1628–1635.

[11]R.J.Davenport,T.P.Curtis,Arefilamentousmycolataimportantinfoaming? WaterSci.Technol.46(2002)529–533.

[12]J.Nakajima,I.Mishima,Measurementoffoamqualityofactivatedsludgein MBRprocess,ActaHydrochim.Hydrobiol.33(2005)232–239.

[13]A.Cosenza,G.DiBella,G.Mannina,M.Torregrossa,TheroleofEPSinfouling andfoamingphenomenaforamembranebioreactor,Bioresour.Technol.147 (2013)184–192.

[14]P.Nardelli,G.Gatti,A.L.Eusebi,P.Battistoni,F.Cecchi,Full-scaleapplication ofthealternatingoxic/anoxicprocess:anoverview,Ind.Eng.Chem.Res.48 (2009)3526–3532.

[15]M.Capodici,G.DiBella,D.DiTrapani,M.Torregrossa,Pilotscaleexperiment withMBRoperatedinintermittentaerationcondition:analysisofbiological performance,Bioresour.Technol.177(2015b)(2015)398–405.

[16]APHA,StandardMethodsfortheExaminationofWaterandWastewater, APHA,AWWAandWPCF,WashingtonDC,USA,2005.

[17]L.L.Blackall,A.E.Harbers,P.F.Greenfield,A.C.Hayward,Activatedsludge foams:effectsofenvironmentalvariablesonorganismgrowthandfoam formation,Environ.Technol.12(1991)241–248.

[18]D.Jenkins,M.G.Richard,G.T.Daigger,ManualontheCausesandControlof ActivatedSludgeBulking,Foaming,andOtherSolidsSeparationProblems, 132–147,Thirdedition,IWAPublishing,London,UK,2004.

[19]M.Rosenberg,D.Gutnick,E.Rosenberg,Adherenceofbacteriato hydrocarbons:asimplemethodformeasuringcell-surfacehydrophobicity, FEMSMicrobiol.Lett.9(1980)29–33.

[20]X.Zhang,P.L.Bishop,B.K.Kinkle,Comparisonofextractionmethodsfor quantifyingextracellularpolymersinbiofilms,WaterSci.Technol.39(1999) 211–218.

[21]O.H.Lowry,N.J.Rosebrough,A.L.Farr,R.J.Randall,Proteinmeasurementwith theFolinphenolreagent,J.Biol.Chem.193(1951)265–275.

[22]M.Dubois,K.A.Gilles,J.K.Hamilton,P.A.Rebers,F.Smith,Colorimetric methodfordeterminationofsugarsandrelatedsubstances,Anal.Chem.28 (1956)350–356.

[23]B.Frolund,T.Griebe,P.H.Nielsen,Enzymaticactivityintheactivated-sludge flocmatrix,Appl.Microbiol.Biotechnol.43(1995)755–761.

[24]R.Bura,M.Cheung,B.Liao,J.Finlayson,B.C.Lee,I.G.Droppo,G.G.Leppard, S.N.Liss,Compositionofextracellularpolymericsubstancesintheactivated sludgeflocmatrix,WaterSci.Technol.37(1998)325–333.

[25]Y.Liu,H.H.P.Fang,Influencesofextracellularpolymericsubstances(EPS)on flocculationsettling,anddewateringofactivatedsludge,Crit.Rev.Environ. Sci.Technol.33(2003)237–273.

[26]H.Nagaoka,H.Akoh,DecompositionofEPSonthemembranesurfaceandits influenceonthefoulingmechanisminMBRs,Desalination231(2008) 150–155.

[27]Y.Tian,Behaviourofbacterialextracellularpolymericsubstancesfrom activatedsludge:areview,Int.J.Environ.Pollut.32(2008)78–89.

[28]D.T.Sponza,Extracellularpolymersubstancesandphysicochemical propertiesofflocsinsteady-andunsteady-stateactivatedsludgesystems, ProcessBiochem.37(2002)983–998.

[29]F.G.Meng,H.M.Zhang,F.L.Yang,Y.S.Li,J.N.Xiao,X.W.Zhang,Effectof filamentousbacteriaonmembranefoulinginsubmergedmembrane bioreactor,J.Membr.Sci.272(2006)161–168.

[30]A.Massé,M.Spérandio,C.Cabassud,Comparisonofsludgecharacteristicsand performanceofasubmergedmembranebioreactorandanactivatedsludge processathighsolidsretentiontime,WaterRes.40(2006)2405–2415.

[31]S.-H.Hong,W.-N.Lee,H.-S.Oh,K.-M.Yeon,B.-K.Hwang,C.-H.Lee,I.-S.Chang, S.Lee,Theeffectsofintermittentaerationonthecharacteristicsofbio-cake layersinamembranebioreactor,Environ.Sci.Technol.41(2007)6270–6276.

[32]M.C.vanLoosdrecht,J.Lyklema,W.Norde,G.Schraa,A.J.Zehnder,Theroleof bacterialcellwallhydrophobicityinadhesion,Appl.Environ.Microbiol.53 (1987)1893–1897.

[33]H.Lemmer,G.Lind,E.Müller,M.Schade,Non-famousscumbacteria: biologicalcharacterizationandtroubleshooting,ActaHydrochim.Hydrobiol. 33(2005)197–202.

[34]S.J.You,W.M.Sue,Filamentousbacteriainafoamingmembranebioreactor,J. Membr.Sci.342(2009)42–49.

(12)

[35]F.Durante,G.DiBella,M.Torregrossa,G.Viviani,Particlesizedistributionand biomassgrowthinasubmergedmembranebioreactor,Desalination199 (2006)493–495.

[36]X.Huang,P.Gui,Y.Qian,Effectofsludgeretentiontimeonmicrobial behaviourinasubmergedmembranebioreactor,ProcessBiochem.36(2001) 1001–1006.

[37]M.Spérandio,A.Masse,M.C.Espinosa-Bouchot,C.Cabassud,Characterization ofsludgestructureandactivityinsubmergedmembranebioreactor,Water Sci.Technol.52(2005)401–408.

Riferimenti

Documenti correlati

To an STS-eye, the current debates on the role of science in the pan- demic might be easily interpreted as the misalignment between “mode-2” concrete expectations (e.g.

Nella fusione e confusione di naturale e soprannaturale, la leggenda muliebre di Montale identifi ca l’impennata vitale (o estasi) con quella lirica: la mistica della poesia

Nonostante i modi garbati della diplomazia facciano sembrare meno violenta, nel 167/6, l’occupazione dell’isola da parte di Atene rispetto all’azione militare del V secolo,

Once checked this aspect, the obtained membrane performances in terms of permeate flux at 4 bar and by adopting the here reported pretreatment steps (CTN) were compared to

Gli esperimenti per valutare l’effetto della concentrazione di biomassa sulla produzione di UAP sono stati effettuati facendo riferimento a tre valori teorici di TSS, 10000 mg/l, 5000

The goal of our research is to obtain information on the mechanisms of fouling of UF/NF membranes used to filter high DOC and hardness surface waters.. The specific

Il movimento punk ha sin da subito suscitato l’inte- resse degli studiosi di teoria della cultura: la cultura punk, dal suo nascere e suo prendere forma, attorno agli anni 1976-80,

1 Sexual Medicine and Andrology Unit, Florence, Italy; 2 Unit of Endocrinology, University of Modena and Reggio.. Emilia, Modena, Italy; 3