• Non ci sono risultati.

Problem 11805 (American Mathematical Monthly, Vol.121, December 2014) Proposed by G. Glebov and S. Fraser (Canada). (a) Show that ∞ X

N/A
N/A
Protected

Academic year: 2021

Condividi "Problem 11805 (American Mathematical Monthly, Vol.121, December 2014) Proposed by G. Glebov and S. Fraser (Canada). (a) Show that ∞ X"

Copied!
2
0
0

Testo completo

(1)

Problem 11805

(American Mathematical Monthly, Vol.121, December 2014) Proposed by G. Glebov and S. Fraser (Canada).

(a) Show that

X

k=0

(−1)k (3k + 1)3 +

X

k=0

(−1)k

(3k + 2)3 = 5π3√ 3 243 ,

X

k=0

(−1)k (3k + 1)3

X

k=0

(−1)k

(3k + 2)3 = 13 18ζ(3).

(b) Prove that

ζ(3) = 9 13

Z 1

0

(ln x)2

x3+ 1dx −18 13

X

k=0

(−1)k (3k + 2)3.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

(a) We note that

A :=

X

k=0

(−1)k (3k + 1)3 =

X

k=0

1 (6k + 1)3

X

k=0

1 (6k + 4)3, B :=

X

k=0

(−1)k (3k + 2)3 =

X

k=0

1 (6k + 2)3

X

k=0

1 (6k + 5)3. Hence

A − B = −Li3(−1) +

X

k=1

1 6k3

X

k=0

1

(6k + 3)3 = −26

27Li3(−1) =13 18ζ(3).

Moreover, by letting ω = eiπ/3 we have

Li3(ω) =

X

k=1

ωk k3 =

X

k=1

1 6k3

X

k=0

1

(6k + 3)3+ ω

X

k=0

1

(6k + 1)3 − ω

X

k=0

1 (6k + 4)3

− ω

X

k=0

1

(6k + 2)3 + ω

X

k=0

1 (6k + 5)3

= −ζ(3)

36 + ωA − ωB = −ζ(3)

36 +A − B 2 +i√

3(A + B)

2 .

It is known that polylogarithms satisfy the following identity Lin(e2πix) + (−1)nLin(e−2πix) = −(2πi)n

n! Bn(x)

where Bn is the Bernoulli polynomial of degree n ≥ 1. For n = 3 and x = 1/6, it becomes 2iIm (Li3(ω)) = Li3(ω) − Li3(ω) = 4π3i

3 B3(1/6) =5π3i 81 . Hence

A + B = 2√ 3

3 Im(Li3(ω)) = 5π3√ 3 243 .

(2)

(b) If |z| = 1 and z 6= 1 then Z 1

0

(ln x)2

x − z dx = −1 z

Z 1 0

(ln x)2

1 − (x/z)dx = −1 z

Z 1 0

(ln x)2

X

k=0

xk

zk dx = −

X

k=0

1 zk+1

Z 1 0

(ln x)2xkdx

= −

X

k=0

1 zk+1



xk+1 (ln x)2

k + 1 − 2 ln x

(k + 1)2 + 2 (k + 1)3

1

0

= − 2

X

k=0

1

zk+1(k + 1)3 = −2Li3(z).

Hence

Z 1 0

(ln x)2 x3+ 1dx = 1

3 Z 1

0

(ln x)2

x + 1 dx − ω 3

Z 1 0

(ln x)2

x − ω dx −ω 3

Z 1 0

(ln x)2 x − ω dx

=2

3(−Li3(−1) + ωLi3(ω) + ωLi3(ω))

=ζ(3) 2 +2

3Re (Li3(ω)) +2√ 3

3 Im (Li3(ω))

=ζ(3) 2 +2

3



−ζ(3)

36 +A − B 2



+ (A + B)

=13ζ(3) 18 +5√

3 243

which is equivalent to the required equality. 

Riferimenti