• Non ci sono risultati.

Notice that for n ≥ 2, log(n

N/A
N/A
Protected

Academic year: 2021

Condividi "Notice that for n ≥ 2, log(n"

Copied!
1
0
0

Testo completo

(1)

Problem 11865

(American Mathematical Monthly, Vol.122, November 2015) Proposed by Gary H. Chung (USA).

Let{an}n≥1be a monotone decreasing sequence nonnegative real numbers.

Prove thatP

n=1an/n < ∞ if and only if limn→∞an= 0 andP

n=1(an− an+1) log(n) < ∞.

Solution proposed by Moubinool Omarjee, Lyc´ee Henri IV, Paris, France, and Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, Italy.

Let

SN =

N

X

n=1

an

n and TN =

N

X

n=1

(an− an+1) log(n).

If {an}n≥1is a monotone decreasing sequence nonnegative real numbers then {SN}N ≥1and {TN}N ≥1

are increasing. Let S and T their limits. Notice that for n ≥ 2,

log(n) − log(n − 1) = Z n

n−1

dx x ∈ 1

n, 1 n − 1

 .

i) If S < ∞ then for N ≥ 2,

aNlog(N ) ≤ aN

N

X

n=2

(log(n) − log(n − 1)) ≤ aN

N

X

n=2

1 n − 1 ≤

N

X

n=2

an−1

n − 1 = SN −1≤ S which implies that an= O(1/ log(n)) and therefore limn→∞an= 0. Moreover

TN =

N

X

n=1

(an− an+1) log(n) =

N

X

n=2

anlog(n) −

N +1

X

n=2

anlog(n − 1)

=

N

X

n=2

an(log(n) − log(n − 1)) − anlog(n − 1)

N

X

n=2

an n − 1 ≤

N

X

n=2

an−1

n − 1= SN −1≤ S

which implies that T < ∞.

ii) If T < ∞ and limn→∞an= 0 then for k ≥ N ≥ 2,

log(N )(aN− ak+1) = log(N )

k

X

n=N

(an− an+1) ≤

k

X

n=N

log(n)(an− an+1) = Tk− TN −1≤ T

and as k → ∞, we obtain that aNlog(N ) ≤ T . Hence

SN− a1=

N

X

n=2

an n ≤

N

X

n=2

an(log(n) − log(n − 1)) =

N

X

n=2

anlog(n) −

N −1

X

n=2

an+1log(n)

=

N −1

X

n=2

(an− an+1) log(n) + aNlog(N ) = TN −1+ aNlog(N ) ≤ 2T,

which implies that S < ∞.

Riferimenti