• Non ci sono risultati.

N X n n − 1 2)(log(2n

N/A
N/A
Protected

Academic year: 2021

Condividi "N X n n − 1 2)(log(2n"

Copied!
2
0
0

Testo completo

(1)

Problem 11494

(American Mathematical Monthly, Vol.117, March 2010) Proposed by O. Furdui (Romania).

LetA denote the Glaisher-Kinkelin constant, given by

A = lim

n→∞n−n2/2−n/2−1/12en2/4

n

Y

k=1

kk= 1.2824 . . .

Prove that

Y

n=1

 n!

√2πn(n/e)n

(−1)n−1

= A3 27/12π1/4.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

We first note that the infinite product can be written as

Y

n=1

(2n − 1)!

p2π(2n− 1)((2n − 1)/e)2n−1

!

·

 (2n)!

√2π2n(2n/e)2n

1

=

Y

n=1

1 e

 2n 2n − 1

2n−1/2

. Hence it suffices to prove that

SN :=

N

X

n=1



−1 + (2n − 1

2)(log(2n) − log(2n − 1))



= 3 log(A) − 7

12log(2) − 1

4log(π) + o(1).

By expanding the partial sum we obtain SN = −N +

N

X

n=1

(2n) log(2n) −1 2

N

X

n=1

log(2n) −

N

X

n=1

(2n − 1) log(2n − 1) −1 2

N

X

n=1

log(2n − 1)

= −N + 2

N

X

n=1

(2n) log(2n) −

2N

X

n=1

n log(n) +1 2

2N

X

n=1

log(n)

= −N + 4 log(2)

N

X

n=1

n + 4

N

X

n=1

n log(n) −

2N

X

n=1

n log(n) −1 2

2N

X

n=1

log(n).

By Stirling’s approximation

2N

X

n=1

log(n) = 1

2log(2π) +1

2log(2N ) + (2N ) log(2N ) − 2N + o(1)

and by the constant A’s definition we have that

N

X

n=1

n log(n) = log(A) + N2 2 +N

2 + 1 12



log(N ) −N2 4 + o(1)

and 2N

X

n=1

n log(n) = log(A) +



2N2+ N + 1 12



log(2N ) − N2+ o(1).

(2)

Finally,

SN = −N + 2 log(2)N(N + 1) + 4 log(A) +



2N2+ 2N +1 3



log(N ) − N2

− log(A) −



2N2+ N + 1 12



log(2N ) + N2− 1

4log(2π)

− 1

4log(2N ) − N log(2N) + N + o(1) = 3 log(A) − 7

12log(2) −1

4log(π) + o(1).



Riferimenti