• Non ci sono risultati.

(1)Problem 11597 (American Mathematical Monthly, Vol.118, October 2011) Proposed by Michel Bataille (France)

N/A
N/A
Protected

Academic year: 2021

Condividi "(1)Problem 11597 (American Mathematical Monthly, Vol.118, October 2011) Proposed by Michel Bataille (France)"

Copied!
1
0
0

Testo completo

(1)

Problem 11597

(American Mathematical Monthly, Vol.118, October 2011)

Proposed by Michel Bataille (France).

Let f (x) = x/ log(1 − x). Prove that for 0 < x < 1,

X

n=1

xn(1 − x)n

n! f(n)(x) = −1 2xf (x).

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

The function f has a power expansion at 0 given byP

k=1akxk for x ∈ (0, 1). Moreover, for m ≥ 1,

[xm]

X

n=1

xn(1 − x)n

n! f(n)(x) = [xm]

X

n=1

xn

n

X

j=0

n j

 X

k=n

k n

 akxk−n

=

m

X

n=1 m

X

k=n

 n

m − k



(−1)m−kk n

 ak

=

m

X

k=1

(−1)m−kak k

X

n=1

 n

m − k

k n



=

m

X

k=1

(−1)m−kak

 22km

 k m − k



 0 m − k



.

Hence, the identity holds as soon as

m

X

k=1

(−1)m−kak

 22km

 k m − k



 0 m − k



= [xm] − 1

2xf (x) = −1 2am−1,

that is if and only if

m

X

k=1

 k m − k



(−4)kak = (−2)mam+ (−2)m−1am−1.

SincePm k=1

k

m−k[tk]g(t) = [tm]g(t(1 + t)), it follows that

m

X

k=1

 k m − k



(−4)kak = [tm]f (−4t) = [tm] −4t(1 + t) log(1 + 4t + t2)

= [tm]f (−2t) + [tm−1]f (−2t) = (−2)mam+ (−2)m−1am−1

and the proof is complete. 

Riferimenti