• Non ci sono risultati.

TASK MATHEMATICS for ECONOMIC APPLICATIONS 12/2/2018

N/A
N/A
Protected

Academic year: 2021

Condividi "TASK MATHEMATICS for ECONOMIC APPLICATIONS 12/2/2018"

Copied!
4
0
0

Testo completo

(1)

TASK MATHEMATICS for ECONOMIC APPLICATIONS 12/2/2018

I M 1) / œ œ # "  3 " œ #  3 Ê

# #

D "  3      cos1 sin 1

% %

Ê / œ / œ / / œ #  3 Ê / œ # Ê B œ #

C œ

D B3C B 3C B

     

cos 1 sin1 log .

% % 1%

So D œlog#  31 .

%

I M 2) To find the eigenvalues of the matrix , we need the determinant  -ˆœ !:

   

   

   

   

   

   

$  # "  ! % 

" %   * " %   *

" #  $  " #  $ 

œ

- - -

- -

- -

V  V"œ $

2

œ#  -% - $ - ")  %   -#  % -œ

œ# - - #- "#  ")  % -œ# - - # #  # œ !-  . There is a real eigenvalue: -" œ #. From -# #  # œ !-  we get:

- œ "„"  # œ "„ " œ "„3. So there are two complex eigenvalues:

-# œ "  3 and -$ œ "  3. Three simple (distinct) eigenvalues, one real and two complex.

To find eigenvectors corresponding to -" œ # we solve the system:

 #ˆ†—œ † œ Ê † œ Ê

" # " B ! " # " B !

" #  * C ! ! !  "! C !

" #  D ! ! !  D !

           

           

           

           

           

 &      '     

Ê B  #C  D œ ! Ê B œ  #C

 "!D œ ! D œ !

  so the eigenvectors are: • œ #5ß  5ß ! .

I M 3) From B  7B  7B  #B œ ! B  B  B  #7B œ !

" # $ %

" # $ % we get:

" 7 7 #  " 7 7 # 

" " " #7 V  V#Ê " ! "  7 "  7 #7  # and so:

for 7 œ "ÊRank  œ "Êthe system has ∞%" œ ∞$ solutions ; for 7 Á "ÊRank  œ #Êthe system has ∞%# œ ∞2 solutions . For 7 œ " " " " #

! ! ! !

we get   † œ Ê B  C  D  #A œ ! Ê

B

C !

D !

A

  

  

  

  

 

Ê D œ  B  C  #A . So a basis for the vector space of the solutions may be:

•œ •" œ "ß !ß  "ß ! à  •# œ !ß "ß  "ß ! à  •$ œ !ß !ß  #ß " .

I M 4) We have — —"# œ "ß #ß  $ † "ß "ß " œ "  #  $ œ !    . To find a vector orthogonal to —" we put:

" †—$ œ "ß #ß  $ † Bß Cß D œ B  #C  $D œ ! Ê B œ $D  #C    .

To get the vector —$ to be orthogonal to —# we put:

# †—$ œ "ß "ß " † Bß Cß D œ "ß "ß " † $D  #Cß Cß D œ $D  #C  C  D œ ! Ê        Ê %D  C œ ! Ê C œ %D and so B œ $D  #C œ $D  )D œ  &D.

So —$ œ  &Dß %Dß D . If we choose D œ  " we get: —$ œ &ß  %ß  " .

(2)

And so we get the basis —œ—" œ "ß #ß  $ à  —# œ "ß "ß " à  —$ œ &ß  %ß  " . To find the coordinates of the vector ˜                          œ "ß !ß "  in the basis we must solve the system:—

 

 

 

 

 

 

" " & B "

# "  % C !

 $ "  " D "

† œ .

By elementary operation on the rows of the augmented matrix we get:

     

     

     

     

     

     

" " & l " " " & l " " " & l "

# "  % l ! !  "  "% l  # !  "  "% l  #

 $ "  " l " ! % "% l % ! $ ! l #

Ê Ê .

So we solve the system:

 



  

B  C  &D œ "

! B  C  "%D œ  #

! B  $ C  !D œ # Ê

B œ "  C  &D œ  D œ #  C œ C œ

"

" # (

"% #"

#

$

.

The coordinates of the vector ˜œ "ß !ß " —  ß ß" # # Þ ( $ #"

  in the basis are  

II M 1) For the system    we get:

 

0 Bß Cß D œ B  C  D  $BC œ ! 1 Bß Cß D œ B  C  $D  BCD œ !

# # $

$ $ #

  

   

0 "ß "ß " œ    $ œ !

1 "ß "ß " œ 1  $ 1 1 œ ! "ß "ß "

1 1 1 , so the system is satisfied at point .

We construct the Jacobian matrix ` 0 ß 1 from

` Bß Cß D œ #B  $C #C  $B $D

$B  CD $C  BD BC  'D

 

   # # #

which we get: ` 0 ß 1 .

` Bß Cß D "ß "ß " œ  "  " $

% %  &

 

    

As   " $  it is possible to define an implicit function like

%  & œ &  "# œ  ( Á !

B Ä C B ß D B     and also an implicit function like C Ä B C ß D C    .

As   "  " it is not possible to define an implicit function like     .

% % œ! D Ä B D ß C D

We choose B Ä C B ß D B     and we get:

.C .D

.B œ  œ  œ  " .B œ  œ  œ !

 " $  "  "

%  & % %

 " $  " $

%  & %  &

   

   

 ( !

 ( ;  ( .

II M 2) Firstly we write the problem in the form:

Max/min u.c.:



   

0 Bß C œ B C  "

B  C Ÿ "

! Ÿ B

#



   

 Max/min

u.c.: .

0 Bß C œ B C  "

B  C  " Ÿ !

 B Ÿ !

#

The objective function of the problem is a continuous function, the feasible region is aX compact set, and so maximum and minimum values surely exist. The constraints are qualified.

Since 0 Bß C œ B C  "   !ß a Bß C −      X and for all the points !ß C it is 0 !ß C œ !  , all the points Bß C À B œ !ß  " Ÿ C Ÿ "  are minimum points for the problem.

(3)

The Lagrangian function of the problem is:

ABß Cß- -"ß #œB C  " -"B  C  "# -#B. 1) case -" œ !ß-# œ ! À

 

 

 

 

 

 

 

A A

wB wC

œ C  " œ ! œ B œ !

Ê

œ ! œ  "

B  C Ÿ "

! Ÿ B

! Ÿ "

! Ÿ !

#

B

C : the point has already been studied.

2) case -" Á !ß-# œ ! À

  

  

  

  

  

  

  

A -

A -

- -

- - - -

- - - -

wB "

wC " " " " "

" "

" "

# #

" " "

# # #

" "

œ C  "  œ ! œ B  # C œ !

Ê Ê

œ  " œ  "

œ #  " œ #  # œ #  #

#  #   "  # $  %

B  C œ "

! Ÿ B

œ "

! Ÿ B

#

C C

B   B

" œ !

! Ÿ B

Ê Ê

œ #  # œ #  # œ !

œ  " œ  " œ  "

$  %

 

 

 

 

 

 

   

B B

C C

- - - -

- -

- - -

"# "#

" "

" "

" " œ ! " œ !

! Ÿ B ! Ÿ !

the point has already been studied

or Ê ; since

œ #  # œ

œ









 B C

"' % )

$ $ *

"

$

"

)

*

"

- -

œ

! Ÿ

œ %  !

% $

$

the point may be a maximum point.

3) case -" œ !ß-# Á! À







 

A -

A

wB #

wC

œ C  "  œ ! œ B œ !

B œ ! B  C Ÿ "#

: points !ß C have already been studied.

4) case -" Á!ß-# Á! À







 

A - -

A -

wB " #

wC "

œ C  "   œ ! œ B  # C œ !

B  C œ "

œ !

B  C œ "

! œ B

#

#

B

!ß "

. Since the points solutions of  are and !ß  ", such points have already been studied.

So the point ) " is the maximum point, with ) " while all the points

* $ß 0 * $ß œ $#

Bß C À B œ !ß  " Ÿ C Ÿ "  with 0 !ß C œ !  are minimum points for the problem.#(

(4)

II M 3) For the existence field of the function 0 Bß C œ B  we must

  log C  "  C  B  "#

satisfy the condition: B  C  " whose solution is given by the union of the solu- C  B  "#  !

tions of the two inequality systems:

B C  "  ! C  B  " B C  "  ! C  B  "

C  B  "  ! C  B  " C  B  "  ! C  B  "

 

# Ê # or # Ê # .

We graphically represent the situation as follows:

The vertical green lines indicate the solution of the first system, the horizontal red lines the solution of the second system.

For the gradient of the function we get:

`0 C  B  " " C  B  "   #B C  " B  #BC  #B  C  "

`B œ C  " † œ C  " C  B  "

C  B  "

# # #

# # #

B  B 

   B  

    

`0 C  B  " " C  B  "  " C  " B  B  #

`C œ C  " † œ C  " C  B  "

C  B  "

# # #

# # #

B  B 

   B  

    .

So f0 !ß ! œ "ß  #   .

II M 4) The function 0 Bß C œ 5 B    # C#B C is a polynomial, so it is twice differen- tiable. So, to calculate the first order directional derivatives we get:

H 0/"  "ß ! œf0 "ß ! † "ß ! œ 0 "ß !    Bw  and H 0/#  !ß " œf0 !ß " † !ß " œ 0 !ß "    Cw Þ

Then from H 0/"  "ß ! œH 0/#  !ß " we get 0 "ß ! œ 0 !ß "Bw  Cw  . Since: 0 Bß C œ #5B  "Bw  Ê0 "ß ! œ #5  "Bw  and

0 Bß C œ  #5C  "Cw  Ê0 !ß " œ  #5  "Cw  from 0 "ß ! œ 0 !ß "Bw  Cw  we get:

#5  " œ  #5  " Ê %5 œ  # Ê 5 œ  "

#. The second order directional derivative it is obtained as:

H/ ß/#" #0 "ß " œ /"† "ß " † /#X Bß C #5  "

‡  . Since ‡  œ  !#5 œ  !

!  ! " we get:

H/ ß/#" #0  "ß " œ " !† "ß " † ! œ" !†  " † ! œ !

" " "

‡     !  

! .

Riferimenti

Documenti correlati

[r]

For the second order conditions we use the borde-. red Hessian matrix: ‡

Find

a compact set, and so surely exist maximum and mini- mum values.. It is not convenient to use

a To nalyze the nature of the stationary points of the function we apply first and second order

To nalyze the nature of the stationary points of the function we apply first and second order

a To nalyze the nature of the stationary points of the function we apply first and second order

Using Kuhn-Tucker conditions, we form the Lagrangian function:... We apply first