• Non ci sono risultati.

TASK MATHEMATICS for ECONOMIC APPLICATIONS 12/10/2019

N/A
N/A
Protected

Academic year: 2021

Condividi "TASK MATHEMATICS for ECONOMIC APPLICATIONS 12/10/2019"

Copied!
4
0
0

Testo completo

(1)

TASK MATHEMATICS for ECONOMIC APPLICATIONS 12/10/2019

I M 1) Calcolate "  3 % "  3'. Since

"  3 œ # † cos1 sin1, we get "  3 œ4 cos sin  à

1 1

%  3 % %  3 œ  %

"  3 œ # † cos ( sin( , we get "  3 œ ) cos #" sin#" 

%1  3 %1 ' #1  3 #1 œ

œ ) cos 1 sin1 Þ So "  3 "  3 œ $#3 Þ

#  3 # œ )3 % '

Since  $#3 œ $#cos$ sin$  we get:

#1  3 #1

 $#3 œ$# †cos$ 5 #  sin$ 5 #  Ÿ Ÿ

%1  #1  3 %1  #1 ß ! 5 "

from which we get:

- œ % # † % #  "  3 " œ  %  %3

# #

"  cos$ sin $       and

%1  3 %1 œ

- œ % # † % # "  3 " œ %  %3 Þ

# #

#  cos( sin (     

%1  3 %1 œ

I M 2) Find the eigenvalues of the matrix  œ .

! ! " "

! ! " "

" " ! !

" " ! !

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From   we get

   

   

   

   

   

   

   

   

- ˆ œ !

! " " ! " "

! " " ! " "

" " ! " " !

" " ! ! !

 

 

 

 

œ œ

- -

- -

- -

- - -

œ   " œ

 " " ! " "

"  !  " "

!  ! 

   

   

   

   

   

   

   

- -

- -

- - - -

œ   "   œ    #  # œ

 # "

"  !

! ! 

        

 

 

 

 

 

   

- - - -

-

-

-

# #

œ  -- - # #  # -# œ-% %-# œ- -## % œ ! and so eigenvalues are:

-" œ-# œ !ß-$ œ #ß-% œ  # .

I M 3) Given the linear map 0 À Ä , œ † , with œ , deter-

" " # "

"  " 7 !

"  " " 5

%$ ˜  — 

 

 

 

 

 

 

 

 

 

 

 

 

mine a basis for the Kernel and a basis for the Image of the linear map generated by , knowing that the Kernel and the Image have the same dimensionsÞÞ

From Sylvester Theorem, it is Dim Imm œRank  and Dim Ker œ 8 Rank  Þ Now 8 œ % and so Dim Imm œDim Ker  œ % Rank  iff Rank  œ # Þ

By elementary operations on the rows and V Ã V  V# # " and V Ã V  V$ $ # we get:

(2)

   

   

   

   

   

   

   

   

   

   

   

" " # " " " # "   

"  " 7 ! !  # 7  #  "

"  " " 5 ! ! "  7 5

Ä from which we see that Rank  œ # iff

7 œ " 5 œ ! Þ œ

" " # "

"  " " !

"  " " !

and So  .

 

 

 

 

 

 

 

 

 

 

 

 

To find a basis for the Kernel we must solve the system:

 —† œ Ê † œ Ê Ê

" " # " ! B  B  #B  B œ !

"  " " ! ! B  B  B œ !

"  " " ! ! B  B  B œ !

B B B B

     

     

     

     

     

     

 

 

 

 

 

 

 

 



"

#

$

%

" # $ %

" # $

" # $

Ê B  B  #B  #B  B œ ! Ê B œ  B  B

B œ  B  B B œ B  $B

"$ # " " # # %%$ " " # # .

So the vectors belonging to the Kernel are — œ B ß B ß " #  B  B B  $B" #ß " # and a basis may be — œ"ß !ß  "ß " à !ß "ß "ß  $  .

To find a basis for the Image we must apply Rouchè-Capelli theorem to the system:

 —† œ˜ Ê † œ Ê

" " # " C B  B  #B  B œ C

"  " " ! C B  B  B œ C

"  " " ! C B  B  B œ C

B B B B

     

     

     

     

     

     

 

 

 

 

 

 

 

 



"

#

$

%

" " # $ % "

# " # $ #

$ " # $ $

and then we

should study the Rank of the matrix and the Rank of the augmented matrix:

 

 

 

 

 

 

" " # " l C

"  " " ! l C

"  " " ! l C

"

#

$

.

By elementary operations on the rows and    V Ã V  V# # " and V Ã V  V$ $ # we get:

" " # " l C " " # " l C

"  " " ! l C !  #  "  " l C  C

"  " " ! l C ! ! ! ! l C  C

Ä

" "

# # "

$ $ #

from which we get:

C œ C$ # and so the vectors belonging to the Image are ˜ œC ß C ß C" # # and a basis may be

˜ œ"ß !ß ! à !ß "ß ".

I M 4) Given the matrix  œ determine its inverse matrix.

" ! "

! " !

! ! "

 

 

 

 

 

 

 

 

 

 

 

 

Since   the matrix has its unique inverse matrix, which

 

 

 

 

 

   

 œ œ " † œ " Á !

" ! "

! " !

! ! "

" !

! "

is given by the transpose of the adjugate matrix adj( ), divided by the determinant of . 

It is Adj( ) œ , then Adj( ) œ , and since det  œ ", we

" ! ! " !  "

! " ! ! " !

 " ! " ! ! "

   

   

   

   

   

   T    

finally obtain: " œ .

" !  "

! " !

! ! "

 

 

 

 

 

 

II M 1) Given the equation 0 Bß C œ B C  BC  B  C œ "  $ $ and the point P! œ "ß !  satisfy- ing it, determine first order derivative of a possible implicit function definable with it.

(3)

From f0Bß Cœ $B C  C  "à B  $BC  " # $ $ #  we get f0   "ß ! œ "à ! and so it is possible to define only an implicit function C ÄB C : B ! œ  ! œ !

"

  w  .

II M 2) Given the functions 0 Bß C œ B  C  # # and 1 Bß C œ B  BC  , the point T œ "ß "!   and the unit vector @œcosαßsinα, find the values of for which α W@0 T ! œW@1 T ! .

0 Bß C œ B  C  # # and 1 Bß C œ B  BC  are differentiable function a Bß C −  ‘#. So H 0@  "ß " œ f0 "ß " † @ œ H 1@  "ß " œ f1 "ß " † @. We get:

f0 B ß C œ #Bà #C Ê f0  "ß " œ #ß # , f1 B ß C œ "  Cà B Ê f1  "ß " œ #ß " . So H 0@  "ß " œ f0  "ß " † cosαßsinαœ H 1@  "ß " œ f1  "ß " † cosαßsinαÊ

Ê #ß # †cosαßsinαœ #ß " †  cosαßsinαÊ #cosα #sinαœ #cosαsinαÊ sinαœ ! Êαœ ! or αœ 1 .

II M 3) Determine maximum and minimum points for the function 0 Bß C œ B  C  # in the rec- tangle œBß C − ‘2: ! Ÿ B Ÿ # à  " Ÿ C Ÿ !.

The objective function of the problem is a continuous function, the feasible region is a com- pact set, and so surely exist maximum and minimum values.

We don't use Kuhn-Tucker's conditions nor the Lagrangian function. Testing for free maximum and minimum points we get:

f Ê 0 œ #B œ !

0 œ  " Á !

0 Bß C œ    BCww and so we get no solutions.

Now we study our function on the points of the boundary of .

For B œ ! we get 0 !ß C œ  C  : a decreasing function;

for B œ # we get 0 #ß C œ %  C  : a decreasing function;

for C œ  " we get 0 Bß  " œ B  "  # : an increasing function for B  !; for C œ ! we get 0 Bß ! œ B  #: an increasing function for B  !.

So, using proper arrows, we see that  !ß ! is the minimum point, with 0 !ß ! œ !  while

#ß  " is the maximum point, with 0 #ß  " œ &  .

II M 4) Given the function 0 Bß C œ B  B C  C  $ # # # nalyze the nature of its stationary points.a To nalyze the nature of the stationary points of the function we apply first and second order a conditions. For the first order conditions we pose:

f Ê 0 œ $B  #BC œ ! Ê

0 œ  #B C  #C œ !

B $B  #C œ !

#C "  B œ !

0 Bß C œ      

 

w # #

Bw #

C

#

# from which we get:

B œ !   $B  #C œ !

C œ !

B œ !

"  B œ ! C œ !

$B  #C œ !

"  B œ !

or # or # or # # .

From the first system we get the point  !ß ! ; the second system is impossible.

(4)

From the third system we get another time the point  !ß ! , and from the last system we get

B œ  " B œ "

C œ B# $# , an impossible system, and C œ B# $# , from which we get the two solutions

"ß$# and "ß $#.

For the second order conditions we construct the Hessian matrix:

‡Bß C œ 'B  #C  %BC 

 %BC #  #B

#

# .

Since ‡ !ß ! œ ! ! we cannot use the leading principle minors. But 0 !ß ! œ ! and, in

! #

   

the orizontal axis we have 0 Bß ! œ B  $, which is negative for B  ! and positive for B  !; so  !ß ! is a saddle point.

Then ‡"ß   and since ‡ , "ß  is a sad-

$

# œ $  % œ  #%  !

 % !

 

 

 

 

 

   

$

#

$

#

#$#

dle point.

Finally ‡"ß    and since ‡ , "ß   is ano-

$

# œ $ % œ  #%  !

% !

 

 

 

 

 

   

$

#

$

#

#$#

ther saddle point.

Riferimenti

Documenti correlati

[r]

For the second order conditions we use the borde-. red Hessian matrix: ‡

Find

a compact set, and so surely exist maximum and mini- mum values.. It is not convenient to use

a To nalyze the nature of the stationary points of the function we apply first and second order

To nalyze the nature of the stationary points of the function we apply first and second order

Using Kuhn-Tucker conditions, we form the Lagrangian function:... We apply first

For a complete analysis we form the Lagrangian function only for this con- straint.. For a complete analysis we form the Lagrangian function only for