• Non ci sono risultati.

TASK MATHEMATICS for ECONOMIC APPLICATIONS 15/1/2018

N/A
N/A
Protected

Academic year: 2021

Condividi "TASK MATHEMATICS for ECONOMIC APPLICATIONS 15/1/2018"

Copied!
5
0
0

Testo completo

(1)

TASK MATHEMATICS for ECONOMIC APPLICATIONS 15/1/2018

I M 1) D œ /691 "'31 œ /691 "' 3/ 1 œ "'cos1 3sin1œ

œ "'cos1 3sin1œ  "'. So % D œ%  "'œ % "' % cos1 3sin1œ

œ #  5  3  5 5 œ !ß "ß #ß $

% % % %

# #

cos1 1 sin1 1

with .

The four roots are:

for 5 œ ! À #  3 œ #  3 # à

% %

cos1 sin1  

for 5 œ " À # $  3 $ œ  #  3 # à

% %

cos 1 sin 1  

for 5 œ # À # &  3 & œ  #  3 # à

% %

cos 1 sin 1  

for 5 œ $ À # (  3 ( œ #  3 #.

% %

cos 1 sin 1  

I M 2) To find the eigenvalues of the matrix , we need determinant  -ˆœ !:

 

 

 

 

 

 

 ! 5

! 5  !

5 ! 

5  5 

-

-

-

- - - - -

œ  # 5# œ   5  5 œ ! . So the three eigenvalues are -" œ-# œ 5ß-$ œ  5.

For 5 Á ! it is 7 œ #ß 7 œ ". Since

5

5

+ +

5 5  5ˆœ

 ! 5

! ! !

5 ! 

 

 

 

 

 

  we get

7 œ $ 15 Rank 5ˆœ $  " œ # (obviously, since the matrix is symmetric).

Since -$ œ  5 is a simple eigenvalue, 715 œ 7+5 œ ". If 5 œ ! we easily get -" œ-# œ-$ œ ! and 7 œ 7 œ $1 .

! +

For 5 Á !, to find eigenvectors corresponding to -!" œ-# œ 5 we solve the system:

 5ˆ†—œ † œ Ê

 ! 5 B !

! ! ! C !

5 !  D !

B  D œ ! a C

     

     

     

     

     

      

5

5 so eigenvectors are: • œ Bß Cß B Þ 

For the basis we need two linearly independent eigenvectors, and we choose:

" œ "ß !ß "  and •# œ !ß "ß ! Þ 

For 5 Á !, to find eigenvectors corresponding to -$ œ  5 we solve the system:

 5ˆ†—œ † œ Ê

! 5 B !

! #5 ! C !

5 ! D !

B  D œ ! C œ !

     

     

     

     

     

      

5

5

so the unique eigenvector is • œ Bß !ß  B Þ  For the basis we choose •$ œ "ß !ß  " Þ 

If 5 œ ! Ê œ −

! ! !

! ! !

! ! !

 • ‘

 

 

 

 

 

 , the null matrix, and its eigenvectors are all $.

(2)

I M 3) Since      we get:

   

0 "ß "ß " œ $ß $ß "

0 "ß "ß  " œ  "ß &ß  "

     

     

     

     

     

     

 

 

 

 

 

 

 

 

 

" B C " $ "  B  C œ $ B  C œ #

# B C " $ #  B  C œ $ B  C œ "

 " B C " "  "  B  C œ " B  C œ

† œ Ê Ê

" " " " " "

# # # # # #

$ $ $ $ $ $ #

and

     

     

     

     

     

     

 

 

 

 

 

 

 

 

 

" B C "  " "  B  C œ  " B  C œ  #

# B C " & #  B  C œ & B  C œ $

 " B C  "  "  "  B  C œ  "

† œ Ê Ê

" " " " " "

# # # # # #

$ $ $ $ B  C œ !$ $

and so:

B  C œ # B B  C œ " B B  C œ  #" " Ê C" B  C œ $# # Ê C#

" " " # # #

œ ! œ #

œ # à œ  " à

B  C œ # B

B  C œ ! Ê C œ

" ! #

# #  "

 " " "

$ $ $

$ $ $

œ "

œ " . So 

 

 

 

 

 

 

 

 

 

 

 

  . Using elementary operations on the rows: V Ã V  #V à V Ã V  #V and then V Ã V  V" we get:

# # " $ $ " $ $ # #

     

     

     

     

     

     

     

     

     

     

     

 " ! #  " ! #       

# #  " ! #  &

 " " " ! " $

Ê Ê Á !

" ! #

! #  &

! ! ""#

. So  and Rank  œ $ . From this we get Dim Imm   œ $ and Dim Ker   œ $  $ œ !.

I M 4) If the vector has coordinates — #ß  "ß # in the basis it means that:–

—œ † œ •

" " " # #

! " "  " !

" ! " " $

     

     

     

     

     

     

 

 

 

 

 

  . If we use the basis we get:

— œ † œ Ê Ê

" " # B # B  B  #B œ # B œ "

! " " B ! ! B  B  B œ ! B œ  "

" ! # B $ B  ! B  #B œ $ B œ "

     

     

     

     

     

     

 

 

 

 

 

 

 

 

 

" " # $ "

# " # $ #

$ " # $ $

.

In fact .

     

     

     

     

     

     

 

 

 

 

 

 

" " # " #

! " "  " !

" ! # " $

† œ œ —

II M 1) From the equation 0 Bß C œ C  logB  B  " /  C œ !  C we get 0 "ß ! œ !  . f0 Bß C œ C† "  / Êf0 "ß ! œ "ß  "

   B CßlogB  B  " /  "  C     .

Since 0Cw "ß ! œ  " Á !, we can define an implicit function C œ C B , for which:

C " œ  "ß ! œ  œ "

"ß !

w   

 

0 "

0  "

Bw Cw

.

Furthermore ‡Bß C  †   / ʇ "ß !  

 /

#

œ  œ #

B  " /

!

!

C B" B" C

"

B C

#

C and so:

C " œ  0  #0 C  0 C œ  œ %

0  "

!  # † # † "  ! † "

ww ww ww w ww w

BB BC CC #

Cw

   

. For the expression of the Taylor polynomial of the second degree at B œ " we get:

T Bß " œ !  C " B  "  C " B  "" œ B  "  # B  " œ #B  $B  "

#  w   # ww  #  # # .

(3)

II M 2) Firstly we write the problem in the form:

Max/min u.c.



 

0 Bß C œ B  C B  %C Ÿ %

#C Ÿ #  B

# #

# #



 

 Max/min

u.c. .

0 Bß C œ B  C B  %C  % Ÿ ! B  #C  # Ÿ !

# #

# # The objective function of the problem is a continuous fun- ction, the feasible region is a compact set, and so maximum and minimum values surelyX exist. The constraints are qualified.

The Lagrangian function of the problem is:

ABß Cß- -"ß #œB  C# #-"B  %C  %# # -#B  #C  #. 1) case -" œ !ß-# œ ! À

 

 

 

 

 

 

 

     

A A

wB wC

œ #B œ ! œ  #C œ !

Ê

œ ! œ ! B  %C Ÿ %

#C Ÿ #  B

!  ! Ÿ %  #

! Ÿ #  !

#

# #

B

C !

Bß C œ !ß ! œ

. ‡ ‡ ! .

Since 0B Bww †0C Cww  ! the point  !ß ! is a saddle point.

2) case -" Á !ß-# œ ! À

 

 

 

 

 

 

 

A - -

A - -

wB " "

wC " "

œ #B  # B œ #B "  œ ! œ  #C  ) C œ  #C "  % œ !

Ê

œ ! œ !

 

 

B  %C œ %

#C Ÿ #  B

!  ! œ %

! Ÿ #  !

# #

B

C impossible

∪ À !ß " !ß  "

B B

„#

 

 

 

 

 

 

 

   

œ !

œ  Ê

œ !

œ   !

-" " -

% " "

%

%C œ %

#C Ÿ #  B

C œ „"

Ÿ #  !

# and may be minimum points;

∪ À #ß !  #ß !

B

B

!

 

 

 

 

 

 

 

   

-

-

"

"

œ "

C œ !

Ê

œ C œ !

œ "  !

# œ %

#C Ÿ #  B

„#

Ÿ #„#

and may be maximum points;





 - -

"

" "

%

œ "

œ  B  %C œ %

#C Ÿ #  B

# # impossible . 3) case -" œ !ß-# Á! À

(4)

 

  

  

  

  

  

 





A -

A -

- -

- - -

wB #

wC #

"

# #

#

# " #

# #

œ #B  œ ! œ  #C  # œ !

Ê Ê

œ œ 

 #

œ œ

#C œ #  B B  %C Ÿ %

 œ #

B  %C Ÿ %

 œ 

 Ÿ % À

# # # #

#

% $

$ %

$

% '%

* *

B C

B C

not satisfied .

The point  ß# % .

$ $ Â X 4) case -" Á!ß-# Á! À







  

A - -

A - -

wB " #

wC " #

œ #B  # B  œ ! œ  #C  ) C  # œ !

Ê œ ! œ # Ê

œ œ !

B  %C œ %

#C œ #

B  %C œ %

#C œ #

B B

C C

# #

# #

B 

B  ∪

. From 1

 

 

 

 

 

 

 

B œ ! C œ "

 œ !

 #C  )  # œ ! Ê

B œ ! C œ "

œ  œ ! -

- -

- -

#

" #

" "

%

#

just seen, it may be a minimum point;

 

 

 

 

 

 

 

B œ # B œ #

C œ ! C œ !

%  %  œ ! œ "

 # œ ! œ !

- - Ê -

- -

" # "

# #

just seen, it may be a maximum point.

Now we study the function in the boundary points.

For B #C œ # Ê B œ #  #C we get 0 C œ  #  #C#  C œ $C  )C  %# # from which 0 C œ 'w  C  )   ! C   %. So for  " Ÿ C Ÿ " the function is increasing.

for $

For B  %C œ % we put B œ # >

C œ >

# #

 cos

sen to get 0 > œ %  cos#> sen#> œ &cos#>  "

from which 0 > œ  "!w  cos sen> >   !Þ

Since we get:



 "!  ! cos sen

>

>

  ! ! Ÿ > Ÿ Ÿ > Ÿ #   ! ! Ÿ > Ÿ

for or

for

1 1

# $# 1

1

So  #ß ! and  #ß ! are maximum points with 0 #ß ! œ 0  #ß ! œ %    ,

 !ß " and !ß  " are minimum points with 0 !ß " œ 0 !ß  " œ  "    .

(5)

II M 3) For the function 0 Bß C œ  C#B  #BC  #(B$ # firstly we find its stationary points. f œ  $0  B  #C  #( #C  %BC# # ß .

I SG:  $ œ ! Ê $ œ ! Ê

œ ! œ !

 B  #C  #(  B  #C  #(

#C  %BC #C "  #B

# # # #

 

Ê œ Ê ∪ Ê

œ !

œ $ œ  $

œ ! œ !

œ œ

œ œ

œ œ 

   

 

 

 

B *

C

B B

C C

C B

B B

C C

# #

and "!& and

" )

#

" "

# #

"!& "!&

# # # #

There are four stationary points:   "ß ! ß  "ß ! ß "#ß "!& ß "#ß  "!&Þ

# # # #

II SG: œ  % .

‡Bß C   'B % C  C #  %B

‡ ‡

     ‡  

$ß !  ")   $ß !

"!

œ ! À  ! À

!   !

"

# is a Maximum point;

‡ ‡

     ‡  

 œ ! À    ! À

! "%  !

$ß ! ") "  $ß !

# is a minimum point;

‡     ‡

    

" "!&

#ß ß

# #

#"!

#"!

 œ  À  ! À

 3 is a Saddle point.

0 #

"

#

"!&

# #

‡     ‡

    

" "!&

#ß  ß 

# #

#"!

#"!

 œ  3 À  ! À is a Saddle point.

0 #

"

#

"!&

# #

II M 4) From 0 Bß C œ  αB  C  #B  $C# " $ # we get:

0 Bß C œ # B  # ß 0Bw  α B Bww Bß C œ # ß 0 Bß C œ $ C  'C ß 0 α Cw  " # C Cww Bß C œ ' C  ' " . From the given conditions:

0 "ß " œ #  # œ 0Bw  α C Cww  "ß " œ '  '" Ê#  # œ '  'α " Ê#α' œ  ) à"

0Cw "ß  " œ $  ' œ 0 " B Bww  "ß  " œ # αÊ$  ' œ #" αÊ#α$ œ ' Þ"

# ' œ  )  œ  "% 

# $ œ ' # œ $  '

œ œ "!

α

α α α

  $

" "

" "

"

Ê Ê

"%

$ .

Riferimenti

Documenti correlati

For the second order conditions we use the borde-. red Hessian matrix: ‡

Find

a compact set, and so surely exist maximum and mini- mum values.. It is not convenient to use

a To nalyze the nature of the stationary points of the function we apply first and second order

To nalyze the nature of the stationary points of the function we apply first and second order

a To nalyze the nature of the stationary points of the function we apply first and second order

Using Kuhn-Tucker conditions, we form the Lagrangian function:... We apply first

For a complete analysis we form the Lagrangian function only for this con- straint.. For a complete analysis we form the Lagrangian function only for